
PRINCIPLES OF

SOFTWARE DESIGN
F. Tip and

M. Weintraub

Thanks go to Andreas Zeller for allowing incorporation of his materials

THE CHALLENGE

1. Software may live much longer than expected

2. Software must be continuously adapted to a changing

environment

3. Maintenance takes 50–80% of the cost

Goal: Make software maintainable and reusable – at little

or no cost

USE THE PRINCIPLES OF OBJECT-ORIENTED

DESIGN TO ACHIEVE THE GOAL

1. Abstraction

2. Encapsulation

3. Modularity

4. Hierarchy

Goal: Maintainability and Reusability

PRINCIPLES OF OBJECT-ORIENTED DESIGN

1. Abstraction

2. Encapsulation

3. Modularity

4. Hierarchy

ABSTRACTION

Concrete Object General Principle

ABSTRACTION…

1. Highlights common properties of objects

2. Distinguishes important and unimportant properties

3. Must be understood even without a concrete object

ABSTRACTION

“An abstraction denotes the essential characteristics

of an object that distinguish it from all other kinds

of objects and thus provide crisply defined

conceptual boundaries, relative to the perspective of

the viewer”

From “Object Oriented Design with Applications” by Grady Booch

PERSPECTIVES

EXAMPLE: SENSORS

AN ENGINEER’S SOLUTION

void check_temperature() {

// see specs AEG sensor type 700, pp. 53

short *sensor = 0x80004000;

short *low = sensor[0x20];

short *high = sensor[0x21];

int temp_celsius = low + high * 256;

if (temp_celsius > 50) {

turn_heating_off()

}

}

C code where values read by a sensor are directly mapped to memory locations

interface Temperature { … }

interface Location { … }

class TemperatureSensor {

public TemperatureSensor(Location){ … }

public void calibrate(Temperature actual){ … }

public Temperature currentTemperature(){ … }

public Location location(){ … }

// private methods below

}

ABSTRACT SOLUTION

All implementation

details are hidden

MORE ABSTRACTION

IT’S A PROJECTION OF A SLIDE OF A

PHOTO OF A PAINTING OF A PIPE

PRINCIPLES OF OBJECT-ORIENTED DESIGN

1. Abstraction – hide details

2. Encapsulation

3. Modularity

4. Hierarchy

PRINCIPLES OF OBJECT-ORIENTED DESIGN

1. Abstraction – Hide details

2. Encapsulation

3. Modularity

4. Hierarchy

ENCAPSULATION

• No part of a complex system should depend on internal details

of another

Goal: keep software changes local

Information hiding: Internal details (state, structure, behavior)

become the object’s secret

GRADY BOOCH ON ENCAPSULATION

“Encapsulation is the process of

compartmentalizing the elements of an

abstraction that constitute its structure and its

behavior; encapsulation serves to separate the

contractual interface of an abstraction and its

implementation.”

Grady Booch, Object-Oriented Analysis and Design with Applications,

Addison-Wesley, 2007, p. 51-52

class ActiveSensor {

public ActiveSensor(Location)

public void calibrate(Temperature actual){ … }

public Temperature currentTemperature(){ … }

public Location location(){ … }

public void register(ActiveSensorObserver o){ … }

// private methods below…

}

AN ACTIVE SENSOR
notified when

temperature

changes

Callback management is the sensor’s secret and this illustrates how the “Observer”

design pattern is used to avoid giving external parties access to internal state of the

ActiveSensor

ANTICIPATING CHANGE

Features you expect will change should be isolated in specific

components

• Number literals

• String literals

• Presentation and interaction

NUMBER LITERALS

int a[100]; for (int i = 0; i <= 99; i++) a[i] = 0;

int ONE_HUNDRED = 100;

int a[ONE_HUNDRED]; …

NUMBER LITERALS

int a[100]; for (int i = 0; i <= 99; i++) a[i] = 0;

int SIZE = 100;

int a[SIZE]; for (int i = 0; i < SIZE; i++) a[i] = 0;

NUMBER LITERALS

double sales_price = net_price * 1.06;

NUMBER LITERALS

double sales_price = net_price * 1.06;

final double SALES_TAX = 1.06;

double sales_price = net_price * SALES_TAX;

STRING LITERALS

if (sensor.temperature() > 100)

System.out.println(“Water is boiling!”);

STRING LITERALS

if (sensor.temperature() > 100)

System.out.println(“Water is boiling!”);

if (sensor.temperature() > BOILING_POINT)

System.out.println(message(BOILING_WARNING,

“Water is boiling!”);

if (sensor.temperature() > BOILING_POINT)

alarm.handle_boiling();

PRINCIPLES OF OBJECT-ORIENTED DESIGN

1. Abstraction – Hide details

2. Encapsulation – Keep changes local

3. Modularity

4. Hierarchy

PRINCIPLES OF OBJECT-ORIENTED DESIGN

1. Abstraction – Hide details

2. Encapsulation – Keep changes local

3. Modularity

4. Hierarchy

MODULARITY

Basic idea: Partition a system such that parts can be designed

and revised independently (“divide and conquer”)

System is partitioned into modules, with each one fulfilling a

specific task

Modules should be changeable and reuseable independent

of other modules

GRADY BOOCH ON MODULARITY

“Modularity is the property of a system that has

been decomposed into a set of cohesive and

loosely coupled modules.”

MODULE BALANCE

Goal 1: Modules should hide information – and expose as little

as possible

Goal 2: Modules should cooperate – and therefore must

exchange information

These goals conflict with each other

PRINCIPLES OF MODULARITY

High cohesion Modules should contain functions that

logically belong together

Weak coupling Changes to modules should not affect

other modules

Law of Demeter Talk only to friends

HIGH COHESION

1. Modules should contain

functions that logically

belong together

2. Achieved by grouping

functions that work on the

same data

3. “Natural” grouping in object

oriented design

WEAK COUPLING

Changes in modules should not

impact other modules

Achieved via

1. Information hiding

2. Depending on as few modules

as possible

LAW OF DEMETER
(OR: PRINCIPLE OF LEAST KNOWLEDGE)

Basic idea: Assume as little as possible

about other modules

Approach: Restrict method calls to

friends

Proposed by Holland, Lieberherr, and Riel at Northeastern University in 1988

Demeter (aka Ceres) is the Greek mythical goddess of the harvest, and she presided also over the sacred

law and the cycle of life and death.

LoD: CALL YOUR FRIENDS

A method M of an object O should only call methods of

1.O itself

2.M’s parameters

3.any objects created in M

4.O’s direct component objects

“single dot rule”

DEMETER: EXAMPLE

class Uni {

Prof boring = new Prof();

public Prof getProf() { return boring; }

public Prof getNewProf() { return new Prof(); }

}

class Test {

Uni uds = new Uni();

public void one() { uds.getProf().fired(); }

public void two() { uds.getNewProf().hired(); }

}

DEMETER: EXAMPLE

class Uni {

Prof boring = new Prof();

public Prof getProf() { return boring; }

public Prof getNewProf() { return new Prof(); }

public void fireProf(...) { ... }

}

class BetterTest {

Uni uds = new Uni();

public void betterOne() { uds.fireProf(...); }

}

DEMETER EFFECTS

1. Reduces coupling between modules

2. Disallow direct access to parts

3. Limit the number of accessible classes

4. Reduce dependencies

5. Results in several new wrapper methods

 “Demeter transmogrifiers”

PRINCIPLES OF OBJECT-ORIENTED DESIGN

1. Abstraction – Hide details

2. Encapsulation – Keep changes local

3. Modularity – Control information flow

high cohesion

weak coupling

 talk only to friends

4. Hierarchy

PRINCIPLES OF OBJECT-ORIENTED DESIGN

1. Abstraction – Hide details

2. Encapsulation – Keep changes local

3. Modularity – Control information flow

High cohesion

weak coupling

 talk only to friends

4. Hierarchy

HIERARCHY

“Hierarchy is a

ranking or ordering of

abstractions.”

CENTRAL HIERARCHIES

1. “has-a” hierarchy – Aggregation of abstractions

A car has three to four wheels

1. “is-a” hierarchy – Generalization across abstractions

An ActiveSensor is a TemperatureSensor

HIERARCHY PRINCIPLES

Open/Close Principle

Classes should be open for extensions

Liskov Substitution Principle

Subclasses should not require more, and not deliver less

Dependency Principle

Classes should only depend on abstractions

OPEN/CLOSE PRINCIPLE

A class should be open for extension, but closed for changes

Achieved via inheritance and dynamic binding

AN INTERNET CONNECTION

void connect() {

if (connection_type == MODEM_56K)

{

Modem modem = new Modem();

modem.connect();

}

else if (connection_type == ETHERNET) …

else if (connection_type == WLAN) …

else if (connection_type == UMTS) …

}

SOLUTION WITH HIERARCHIES

AN INTERNET CONNECTION

abstract class Connection {

abstract int connect();

abstract int hangup();

}

class EthernetConnection extends Connection {

int connect() {// does Ethernet connection; }

}

class ModemConnection extends Connection {

int connect() {// does dial-up connection; }

}

…

CONSIDER BILLING PLANS

enum { FUN50, FUN120, FUN240, ... } plan;

enum { STUDENT, ADAC, ADAC_AND_STUDENT ... } special;

enum { PRIVATE, BUSINESS, ... } customer_type;

enum { T60_1, T60_60, T30_1, ... } billing_increment;

int compute_bill(int seconds)

{

if (customer_type == BUSINESS)

billing_increment = T1_1;

else if (plan == FUN50 || plan == FUN120)

billing_increment = T60_1;

else if (plan == FUN240 && contract_year < 2011)

billing_increment = T30_1;

else

billing_increment = T60_60;

if (contract_year >= 2011 && special != ADAC)

billing_increment = T60_60;

// etc.etc.

HIERARCHY SOLUTION

You can add a new plan at any time!

HIERARCHY PRINCIPLES

Open/Close principle – Classes should be open for extensions

Liskov substitution principle – Subclasses should not require more, and

not deliver less

Dependency principle – Classes should only depend on abstractions

LISKOV SUBSTITUTION PRINCIPLE

An object of a superclass should always be substitutable by an

object of a subclass:

Same or weaker preconditions

Same or stronger postconditions

Derived methods should not assume more or deliver less

CIRCLE VS ELLIPSE

Every circle is an ellipse

Does this hierarchy make sense?

No, as a circle requires more and

delivers less

draw()

stretchX()

draw()

Ellipse

Circle

HIERARCHY PRINCIPLES

Open/Close principle – Classes should be open for extensions

Liskov substitution principle – Subclasses should not require more, and

not deliver less

Dependency principle – Classes should only depend on abstractions

DEPENDENCY PRINCIPLE

A class should only depend on abstractions – never on concrete

subclasses (dependency inversion principle)

This principle can be used to break dependencies

// Print current Web page to FILENAME after user clicks “print."

void print_to_file(string filename)

{

if (path_exists(filename))

{

// FILENAME exists;

// ask user to confirm overwrite in UserPresentation

bool confirmed = confirm_loss(filename);

if (!confirmed)

return;

}

// Proceed printing to FILENAME

...

}

DEPENDENCY

CYCLIC DEPENDENCY

constructing, testing, reusing individual

modules becomes impossible!

// Print current Web page to FILENAME after user clicks “print."

void print_to_file(string filename, Presentation p)

{

if (path_exists(filename))

{

// FILENAME exists;

// ask user to confirm overwrite

bool confirmed = p.confirm_loss(filename);

if (!confirmed)

return;

}

// Proceed printing to FILENAME

...

}

DEPENDENCY

DEPENDING ON ABSTRACTION

1. Which is the “dominant”

abstraction?

2. How does this choice impact

the remaining system?

CHOOSING ABSTRACTION

PRINCIPLES OF OBJECT-ORIENTED DESIGN

Abstraction – Hide details

Encapsulation – Keep changes local

Modularity – Control information flow

high cohesion

weak coupling

 talk only to friends

Hierarchy – Order abstractions

classes open for extensions, closed for changes

subclasses that do not require more or deliver less

depend only on abstractions

PRINCIPLES OF OBJECT-ORIENTED DESIGN

Abstraction – Hide details

Encapsulation – Keep changes local

Modularity – Control information flow

high cohesion

weak coupling

 talk only to friends

Hierarchy – Order abstractions

classes open for extensions, closed for changes

subclasses that do not require more or deliver less

depend only on abstractions

Goal: Maintainability and Reusability

