E Tip and DESIGN PATTERNS

M. Weintraub

Thanks go to Andreas Zeller for allowing incorporation of his materials

Northeastern University
College of Computer and Information Science 440 Huntington Avenue « 202 West Village H « Boston, MA 02115 « T61/.373.2462 « ccis.northeastern.edu

STRUCTURAL PATTERNS

= concerned with how classes and objects are composed to form larger
structures

= structural class patterns: use inheritance to compose interfaces or
implementations

= structural object patterns: describe ways to compose objects to
realize new functionality

= Adapter
- Composite
* Proxy

- Bridge

ADAPTER

= converts the interface of a class into another interface that clients expect
=« Class Adapter: uses (multiple) inheritance
= Object Adapter: relies on object composition

= Use Adapter when:

= yOu want to use an existing class, and its interface does not match the
one you need

= (Object adapter) you need to use several existing subclasses, but it's
impractical to adapt their interface by subclassing every one.

ADAPTER: PARTICIPANTS

Target

» defines the interface that you
need to iImplement

Client

= collaborates with objects
conforming to the Target
Interface

Adaptee

» defines an existing interface
that needs adapting

Adapter

= adapts the interface of
Adaptee to the Target interface

Client

Client

Target Adaptee
+request () +specificRequest ()
Adapter ,,,,, result = specificRecuest () [ﬁ
trequest ()= "]
class adapter
Target)l Adaptee
+request () 4+specificRequest ()
Adapter adaptee
+requesc(),
‘ result = adaptee.specificReguest() Iﬁ

object adapter

ADAPTER: EXAMPLE

= SUpPpPOse we have a Client application that uses a Stack, with
operations push (), pop (), size()

= Instead of implementing Stack from scratch, we want to use an
existing Vector that provides almost the right functionality

s Vector has methods elementAt (), insertElementAt (), size ()

= Solution: create a StackAdapter class
s (Class adapter) extends Vector, implements Stack
= (Object adapter) has pointer to a Vector, implements Stack

CLASS ADAPTER

public class (Client {
public static void main(String[] args) {
Stack<String> s =
new StackAdapter<String>(Q);
s.push("foo");
s.push("bar");
System.out.println(s.pop());
System.out.println(s.pop());

h
¥

interface Stack<T> {
public void push(T t);
public T popQ);
public int size();

¥

class StackAdapter<T> extends Vector<T>
implements Stack<T> {
StackAdapter(){
super();

ks
public void push(T t){

insertElementAt(t, size());

}

public T pop(){
T t = elementAt(size()-1);

removeElementAt(size()-1);
return t;

}

// 1nherit size() method from Vector

OBJECT ADAPTER

public class Client { class StackAdapter<T> implements Stack<T> {
public static void main(String[] args) { StackAdapter() {
Stack<String> s = _adaptee = new Vector<T>();
new StackAdapter<String>(); }
s.push("foo"); public void push(T t) {
s.push("bar"); _adaptee.insertElementAt(t, _adaptee.size());
System.out.println(s.pop()); }
System.out.println(s.pop()); public T pop() {
} T t = _adaptee.elementAt(_adaptee.size()-1);
} _adaptee.removeElementAt(_adaptee.size()-1);
return t;
interface Stack<T> { }
public void push(T t); public int size() {
public T pop(Q); return _adaptee.size();
public int size(); }
} private Vector<T> _adaptee;

ADAPTER: TRADEOFFS

= class adapters:

» adapts Adaptee to Target by committing to a specific Adapter class;
will not work when we want to adapt a class and its subclasses

» |lets Adapter override/reuse some of Adaptee’s behavior

= Introduces only one object, no additional pointer indirection is
needed to get to Adaptee

= object adapters:

= |ets a single Adapter work with many Adaptees (and change them
at run time)

» makes it harder to override Adaptee behavior (requires subclassing
of Adaptee, and making Adapter refer to the subclass)

BRIDGE

» decouple an abstraction from its implementation so that the two can
vary independently

= use Bridge when:

= yOu want to avoid a permanent binding between an abstraction and
its Implementation

= poth the abstractions and implementations need to be subclassed
and you want to avoid a proliferation of classes caused by
extension in multiple, orthogonal extensions

= you want to share an implementation among multiple objects, and
hide this fact from the client

BRIDGE: WHEN TO APPLY?

= when extending a class hierarchy in multiple "dimensions” leads to:
= an combinatorial explosion in number of classes
s difficulties in sharing of implementations
= exposure of platform dependencies to clients

Window Window
4 A
-
XWindow PMWindow XWindow PMWindow lconWindow

N

lconXWindow lconPMWindow

BRIDGE: PARTICIPANTS

= Abstraction

= defines the abstraction’s
interface

= maintains a reference to an Client
object of type Implementor
= RefinedAbstraction

impl.operationImpl () lﬁ

1
I
I
I
|

= extends the interface defined Abstraction,’ i Implementor
by Abstraction +operation(f +operationlmpl ()
= Implementor 4
= defines the interface for the
iImplementation classes:;
doesn’t have to match RefinedAbstraction ConcretelmplementorA | [ConcretelmplementorB
interface of Abstraction +operation|) [operaciontopl() |

= Concretelmplementor

= mplements the Implementor
interface and defines its
concrete implementation

11

BRIDGE: EXAMPLE

public enum StackType { class Stack<T> {
Array, Stack(StackType implType){
LinkedL1ist switch (implType){
} case LinkedlList:
_impl = new LinkedListBasedStack<T>();
public class (Client { case Array:
public static void main(String[] args) { default:
Stack<String> s = _impl = new ArrayBasedStack<T>();
new Stack<String>(StackType.Array); }
s.push("foo"); }
s.push("bar"); public void push(T t){ _impl.push(t); }
System.out.println(s.pop()); public T pop(D{ return _impl.pop(); }
System.out.println(s.pop());
} private StackImpl<T> _impl;
ks ks

interface StackImpl<T> {
public void push(T t);
public T pop();

¥

12

TWO IMPLEMENTATIONS

class ArrayBasedStack<T>
implements StackImpl<T> {
public void push(T t){
1f ('(_size == MAX_SIZE-1)){
_elements[++_s1ize] = t; }
ks
public T pop(O{
1f ((_size == -1)){ return null; }
return _elements[_size--];
ks
private final int MAX_SIZE = 100;
private T[] _elements =
(T[IDnew Object[MAX_SIZE];
private int _size = -1;

class LinkedListBasedStack<T>

implements StackImpl<T> {
private class Node {
// details omitted
Iy
public void push(T t){
1f (_tail == null){
_tail = new Node(t);
} else {
_tail.next = new Node(t);
_tail.next.prev = _tail;
_tail = _tail.next;

ks
ks
public T pop(){
1f (_tail == null) return null;
T ret = _tail.value;
_tail = _tail.prev;
return ret;

¥

private Node _tail;

13

BRIDGE VS. ADAPTER

» Adapter and Bridge lead to code that looks quite similar.

= However, they serve different purposes:

= Adapter is retrofitted to make existing unrelated classes work
together.

» Bridge is designed up-front to let the abstraction and the
implementation vary independently.

14

. - .
~
~
N

= Compose objects into tree structures to represent part-whole
hierarchies.

COMPOSITE

» Composite lets you treat individual objects and compositions of
objects unitormly.

= Apply Composite when:
= you want to model part-whole hierarchies of objects

= you want clients to be able to ignore the difference between
compositions of objects and individual objects

15

COMPOSITE: PARTICIPANTS

Component
= declares common interface
= implements default behavior

» declares interface for accessing/

managing child components ana
(optional) for accessing parent

Leaf

= represents leaf objects

= defines behavior for primitive objects
Composite

» defines behavior for components
with children

= stores child components
= Implements child-related operations
in Component
Client

= manipulates objects via the
Component interface

Clientp======-- Component
+operation()
+add (Component) =
+remove (Component)
+getChild(int)
Leaf Composite
+operation() +operation()s.

+add(C0mponentf‘~.‘

+remove (Component)
+getChild(int)

children

“«| forall g in children

g.operation()

T

16

COMPOSITE EXAMPLE: UNIX FILE SYSTEMS

» a Node (Component) is a:
= File (Leaf) or a
= Directory (Composite)

» the £ind command can be used to find files with a particular name
= USes auxiliary operation getAbsoluteName ()

= Usage: find <directory> —-name <pattern>

» find . -name “*.java” finds all Java source files in the current
directory and its subdirectories and prints their absolute name

= we consider a simplified version: a method Node . £ind (s) that
finds all the files whose name contains s as a substring.

17

CLIENT PROGRAM

public class Main {

/
public static void main(String[] args){ ///
Directory root = new Directory("");

Directory usr = new Directory("usr"”, root);

new File("core", root);

new File("adm", usr);

new Directory("foo", usr);

new File("barl", usr);

new File("xbar2", usr);

new Directory('"yybarzz3", usr);

core
usr

xbar?

L NT

barl

System.out.println(root.find("bar"));

prints

[/usr/barl, /usr/xbar2, /usr/yybarzz3/]

yybarzz3

18

NODE, FILE, DIRECTORY

abstract class Node { class Directory extends Node {
Node(String name, Directory parent) { .. }
public String getAbsoluteName() { .. } Directory(String n){ this(n, null); }
public String toString() { Directory(String n, Directory p){ .. }
return getAbsoluteName(); public String getAbsoluteName(){ .. }
; public void add(Node n){

public abstract List<String> find(String s);

protected String _name; _children.add(n);

protected Directory _parent; ¥
3
public List<String> find(String s){
class File extends Node { List<String> result =
File(String n, Directory p){ new ArraylList<String>();
super(n,p); if (_name.index0f(s) != -1){
} result.add(getAbsoluteName());
public List<String> find(String s){ !
Llst<5§"1”9i,risglt,= . for (Node child : _children){
new ArraylList<String>(Q); 1t addAllCchild. i i
if (_name.index0f(s) = -1){ 1 (eSS L HCE! R CV
result.add(this.getAbsoluteName());
1 return result;
return result; ¥ . . .
1 private List<Node> _children;

} ¥

19

COMPOSITE: CONSIDERATIONS

= composite makes clients more uniform
= some operations only make sense for leaf or composite classes, but not for both
= composite makes it easy to add new kinds of components

= implementation issues:
= need explicit parent reference in Component
= sharing components for efficiency (— Flyweight)
= storage management issues
= child ordering relevant or not (—Iterator)
= caching traversal/search information for efficiency

2

PROXY %

= Proxy provides a surrogate or placeholder for another object to control
access to it

= Apply Proxy when:
= yYOu need a local representative for an object that lives in a different
address space (remote proxy)

= yOu want to avoid the creation of expensive objects until they are
really needed (virtual proxy)

= yOu want to control access to an object (protection proxy)

= YOU need a smart pointer that performs additional actions when an
object is accessed (e.qg., reference-counting, loading persistent
objects into memory)

21

PROXY: PARTICIPANTS

= Proxy

= maintains reference that lets proxy access
real subject
= provides an interface identical to the
subject’s
= controls access to the real subject, and may
be responsible for creating & deleting it
= other responsibilities:
= remote proxies: encoding and
transferring request
= virtual proxies: caching information
= protection proxies: check access
permissions
= Subject
= defines the common interface for

RealSubject and Proxy so that Proxy can be
used anywhere RealSubject is used

= RealSubject

» defines the real object represented by the
Proxy

Client

----------- > Subject

+recquest ()

RealSubject

l(realSubject

Proxy

+recquest ()

+recquest (
| J

realSubject.request ()

A

22

PROXY EXAMPLE: SYMBOLIC LINKS

= In Unix, you can create symbolic links to files and directories with the
‘In" command

= Syntax: 1ln —-s <directory> <linkName>

= after this command, you can access the directory also via the link

= you can tell the £ind command to follow symbolic links by specitying
the —follow option

= we now extend the File System example with symbolic links,
implemented using Proxy

23

LINK

class Link extends Node {
Link(String n, Node w, Directory p){ .. }
public String getAbsoluteName(){ .. }

public Vector<String> find(String s){

Vector<String> result = new Vector<String>();

1f (_name.indexO0f(s) !'= -1){
result.add(getAbsoluteName());

Iy

Vector<String> resultsVialLink = _realNode.find(s);

int n = _realNode.getAbsoluteName().length();

for (String r : resultsVialink){
String name = super.getAbsoluteName() + "/" + r.substring(n);
result.add(Cname);

h

return result;

}

private Node _realNode;

¥

UPDATED CLIENT PROGRAM

public class Main {
public static void main(String[] args){

Directory root = new Directory(""); ///' \\\\ ‘;Eiffif\:::>
new File("core", root);

Directory usr = new Directory("usr", root); core usr link
new File("adm", usr);
Directory foo = new Directory("foo", usr); ,/// \\\
new File("barl", foo);
new File("xbar2", foo);
new File("yybarzz3", foo); / ‘ \
Link link = new Link("1link", usr, root); barl
new Link("1ink2", link, root); yybarzz3
System.out.println(root.find("bar")); xbar?2
¥
¥

[/usr/foo/barl, /usr/foo/xbar2, /usr/foo/yybarzz3, /link/foo/barl, /link/foo/xbarZ2,
/1ink/foo/yybarzz3, /1ink2/foo/barl, /1ink2/foo/xbar2, /l1ink2/foo/yybarzz3]

25

BEHAVIORAL PATTERNS

= concerned with algorithms and the assignment of responsibilities
between objects

= behavioral class patterns use inheritance to distribute behavior
between classes

= behavioral object patterns use composition to distribute behavior
between objects

= Chain of Responsibility = Observer

= Command = State

= Interpreter = Strategy

= |terator = [emplate Method
= Mediator = \isitor

= Memento

26

ITERATOR

= provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation

= apply lterator for the following purposes:
» {0 access an aggregate object’'s contents without exposing its
internal representation

» 10 support multiple traversals of aggregate objects

= {0 provide a unitorm interface for traversing different aggregate
structures (support polymorphic iteration)

27

ITERATOR: PARTICIPANTS

Iterator
= defines an interface for
accessing and traversing
elements
Concretelterator
= implements the lterator interface

= keeps track of the current
position in the traversal of the
aggregate
Aggregate
= defines an interface for creating
an lterator object
ConcreteAggregate

= mplements the lterator creation
Interface to return an instance of
the proper Concretelterator

Aggregate === -nee---s Client p---====---

+oreatelterator ()

JAY

ConcreteAggregate f----=---=========cccceemnuum-

>| Iterator

+first()
+next ()
+isDone ()
+currentItem()

al Concretelterator

+createlterator () « <
—

return new Concretelterator (this); E1

+first ()
+next ()
+isDone ()
+currentItem()

28

ITERATOR: EXAMPLE

= Use lterator to allow clients to iterate through the Files in a directory
= Without exposing Directory’s internal structure to the client

interface Iterator<T> { class Directory extends Node {
void first(); .
volid next(); private class Directorylterator implements Iterator<Node> {
boolean 1isDone(); private List<Node> _files;
T current(); private int _fileCnt;
ks

Directorylterator(Directory d) {
_files = d._children; _fileCnt = 0;
ks
public void first() { _fileCnt = 0; }
public void next() { _fileCnt++; }
public boolean isDone() {
return _fileCnt == _files.s1ze();
ks
public Node current() {
return _files.get(_fileCnt);

¥
h

29

CLIENT

public class Main {
public static void main(String[] args){

}

h

Directory root = new Directory("");
Directory usr = new Directory("usr", root);
new File("core", root);

new File("adm", usr);

new Directory("foo", usr);

new File("barl", usr);

// use 1iterator to print contents of /usr

Tterator<Node> 1t = usr.iterator();

for (it.first(); !'it.isDone(); it.next()){
Node n = it.current();
System.out.println(n.getAbsoluteName());

¥
prints:

/usr/adm
/usr/foo/
/usr/barl

core

usr

/
adm

N T

foo

barl

30

ITERATOR: CONSIDERATIONS

= two kinds of iterators:

= internal iterators: iteration controlled by iterator itself. Client hands
iterator operation to perform; iterator applies op. to each element

= external iterators: client controls iteration (by requesting next
element)

= some danger associated with external iterators

= €.g., an element of the underlying collection may be removed during
iteration. Iterators that can deal with this are called robust.

» Iterators may support additional operations such as skipTo (int) or
remove ()

» the Java libraries define an interface java.util.Iterator with
hasNext (), next (), remove () methods

» if remove () IS not supported by a Concretelterator, an
UnsupportedOperationException IS thrown

31

OBSERVER

» Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated

automatically

= apply Observer when
= when an abstraction has two aspects, one dependent on the other.
= when a change to one object requires changing others

= when an object should be able to notity other objects without
making assumptions about the identity of these objects

32

OBSERVER: PARTICIPANTS

Subject ;
_ Subject
= knows its observers. any number of attach (Observer)
observers may observe a subject :ﬁgtj‘;:f’f’fe“’e”
= provides an interface for attaching/ S
detaching observers
Observer ConcreteSubject [

observers

)

o.update():

for all o in ohservers |{ D}

subject

» Observer

+update ()

defines an updating interface for objects e
that should be notified of changes

ConcreteSubject

stores state of interest to ConcreteObserver
objects

sends a notification to its observers when
state changes

ConcreteObserver

maintains reference to a ConcreteSubject
object

stores state that should stay consistent with
subject’s

implements the Observer updating interface
to keep its state consistent with the subject’s

ConcreteObserver

4update () ,

\
\

calls subject.getState() to
rectrieve state of the subject

]

33

OBSERVER: SEQUENCE DIAGRAM

- concreteSubject

notifvy()

update ()

o1 : concreteQObserver

|
setitate () [

l

l

update ()

l
getState(:[:
I

02 : concreteQObserver

I

I
I
I
I
I
I
I
I
I
I
I
—

I
|
l

>
getitate ()

34

OBSERVER: EXAMPLE

» add FileObservers to our FileSystem example.
» add a method write (String) to class File to model operations
that change a File’s contents
» associate FileObservers with Files; notify these after each write

= FileObservers print a warning message that the file has changed

interface Observer {
public void update();

}

class FileObserver implements Observer {
FileObserver(File f){
f.attach(this);
_subject = f;
hy
public void update(){
System.out.println("file " +
_subject.getAbsoluteName() + " has changed.");
hy

private File _subject;

}

35

ATTACHING AND NOTIFYING OBSERVERS

class File extends Node {
File(String n, Directory p){
super(n,p);
by
public void attach(Observer o0){
1f (!_observers.contains(o)){
_observers.add(o);

}

by
public void detach(Observer o0){

_observers.remove(o);
by
public void notifyObservers(){
for (Observer obs : _observers){
obs.update();

¥

}
public void write(String s){

notifyObservers();
h

private List<Observer> _observers = new ArraylList<Observer>();

UPDATED CLIENT

public class Main {
public static void main(String[] args){
Directory root = new Directory("");
File core = new File("core", root);

// create observer for file core
FileObserver obs = new FileObserver(core);
core.write("hello");

core.write("world");

prints

file /core has changed.
file /core has changed.

37

OBSERVER: CONSIDERATIONS

= who triggers the update?
= state-changing methods call notify() method, or
= make clients responsible for calling notify()

= avoiding observer-specific update protocols

= push model: subject sends its observers detailed information about the
changes

= pull model: subject only informs observers that state has changed;
observers need to query subject to find out what has changed

= specifying modifications of interest explicitly
= when observer is interested in only some of the state-changing events

= encapsulating complex update semantics

= for highly complex relationships between subject and observer, introduce a
ChangeManager class to coordinate

38

NOTICE

ALL VISITORS
VISITOR

4

= represent an operation to be performed on a set of “related classes”
without changing the classes.

= apply Visitor when:
= a hierarchy contains many classes with differing interfaces, and you
want to perform operations on these objects that depend on their
concrete classes

= many distinct and unrelated operations need to be performed on
objects, and you want to avoid polluting their classes with these
operations

= the classes in the object structure rarely change, but you frequently
want to add new operations on the structure

39

VISITOR: PARTICIPANTS

Visitor
» declares avisit () operation for

each class of ConcreteElement in the
object structure

ConcreteVisitor
= implements each operation declared
by Visitor
Element

= defines an operation
accept (Visitor)

ConcreteElement
= implements operation accept(Visitor)

[SEERsssEsEressssEasEssesEnEe » Visitor
+visith()
+v1is1tE ()
ConcreteVisitori ConcreteVisitor2
4visith() 4visith()
4visitB() 4visitB()
ent
-------------------------- > Element

+accept (Visitor)

ConcreteElementA

+accept (Visitor)
+operationd()s

\

v.visitA(this); D1

ConcreteElementB

+accept (Visitor)
+operationBi(),
A)

]

v.visitB(this): D1

40

VISITOR: SEQUENCE DIAGRAM

 client c1: ConcreteElementA I c2 : ConcreteElementB . ConcreteVisitor
| I [I
e l | |
accept (aVisitor) visitd{cl) | -
T , :
1 I
| operationdi)
N |
I I
accept (aVisitor) . o |
> visitB(c2) g
I >-

operationB()

— w— - o e e e s el w— e

— em— em— —
e

VISITOR: EXAMPLE

» final variation on the FileSystem example
= pased on solution with links, iterators

= use Visitor to implement variant of Unix “du” command (du counts the
size of a directory and its subdirectories, usually in 512-byte blocks)

= Sfeps:
s create interface Visitor with methods visit (File),
visit (Directory), visit (Link)
= Create class DuvVisitor that implements Visitor

» declare accept (Visitor) method in class Node, implement in
File, Directory, Link

42

STEP 1: ADDING ACCEPT() METHODS

class File extends Node {

public void accept(Visitor v){
v.visit(this);

¥ class Directory extends Node {
¥ public void accept(Visitor v){
, v.visit(this);
class Link extends Node { 1
public void accept(Visitor v){ 1 -
v.visit(this);
ks

STEP 2: DEFINE A VISITOR

interface Visitor {
public void visit(File f);
public void visit(Directory d);
public void visit(Link 1);

}

class DuVisitor implements Visitor {

DuVisitor(){
_nrFiles = @; _nrDirectories = 0;
_nrLinks = 0; _totalSize = 0;

ks

public void visit(File f){
_nrFiles++;
_totalSize += f.size();

hy

public void visit(Link 1){
_nrLinks++;

¥

public void visit(Directory d){
_nrDirectories++;
ITterator<Node> it = d.iterator();
for (1t.first(); !i1t.i1sDone(); 1t.next()){
Node n = it.current();
1f (n instanceof File){
visit((File)n);
} else 1f (n instanceof Directory){
visit((Directory)n);
} else 1f (n instanceof Link){
visit((Link)n);
by
Iy

h
public void report(){

System.out.println("files: "+ _nrFiles);
System.out.println("directories: " + _nrDirectories);
System.out.println("links: " + _nrLinks);
System.out.println("total size: " + _totalSize);

}

int _totalSize; int _nrFiles; int _nrLinks; int

_nrDirectories;

44

CLIENT

public class Main {
public static void main(String[] args){

Directory root = new Directory("");
new File("core", root, "hello");
Directory usr = new Directory("usr", root);
new File("adm", usr, "there");
new Directory("foo", usr);
new File("barl", usr, "abcdef");
new File("xbar2", usr, "abcdef");
new File("yybarzz3", usr, "abcdef");
Link 1Tink = new Link("link", usr, root);
new Link("link2", link, root);

DuVisitor visitor = new DuVisitor();

root.accept(visitor); prints:
visitor.report(); files: 5
; directories: 3
; links: 2

total size: 28

VISITOR: CONSIDERATIONS

= requires ConcreteElement classes to expose enough state so Visitor
can do its job

= pbreaks encapsulation

= adding new operations is easy
= Dy defining new ConcreteVisitor

= adding new ConcreteElement classes is hard
= gives rise to new abstract operation on Visitor
= ...and requires implementation in every ConcreteVisitor

= Visitor not limited to a class hierarchy, can be applied to any collection
of classes

» provided they define accept () methods

STATE

= allow an object to change its behavior when its internal state changes

= use State when:
= an object’s behavior depends on its state

= operations have large conditional statements that depend on the
object’s state (the state is usually represented by one or more
enumerated constants)

47

STATE: PARTICIPANTS

= Context

s defines interface of interest
to clients

= maintains reference to a
ConcreteState subclass that
defines the current state

= State

» defines an interface for
encapsulating the behavior
associated with a particular
state of the Context

= ConcreteState subclasses

» cach subclass implements
a behavior associated with
a state of the Context (by
overriding methods in State)

Context

+request[y

state.handle() D1

state

1

> State
+handle()

S

ConcreteStated ConcreteState2

+handle ()

+handle ()

48

STATE: EXAMPLE

= example of a vending machine:
= product price is $0.25
= machine accepts any combination of nickels, dimes, and quarters

= customer enters coins; when credit reaches $0.25 product is
dispensed, and refund is given for the remaining credit.

= machine has display that shows the current balance

49

VENDING MACHINE: UML STATECHART DIAGRAM

addQuarter
/ddspen Credits

addNickel

addDime

=

Credit10)
|

addQuarter
/dispenseProd
/refundil0

ct

Jrefund5s addNickel
addQuyrter lspensePrgduct
/dispe
frefundz0

50

“TRADITIONAL” IMPLEMENTATION

= USe an integer value to represent the states
= more complex situations may require an enum or object

» methods addNickel (), addDime (), and addQuarter () model user
Inserting coins

= methods refund (), displayBalance (), and dispenseProduct ()
model system’s actions

» conditional logic (with 1£/switch statements) depending on current
state

51

“TRADITIONAL” IMPLEMENTATION

class VendingMachine {

private int _balance;

public VendingMachine() {
_balance = 0; welcome();

ks

void welcome() {
System.out.println("Welcome.
Please enter $0.25 to buy product.");

ks

volid dispenseProduct() {
System.out.println("dispensing product...");

ks

vold displayBalance() {
System.out.println("balance 1s now: " +

_balance);

ks

void refund(int 1) {
System.out.println("refunding:

}

+ 1);

public void addNickel() {

switch (_balance) {

case @ : { _balance = 5;
displayBalance();

break; }

case 5 : { _balance = 10;
displayBalance();

break; }

case 10 : { _balance = 15;
displayBalance();

break; }

case 15 : { _balance = 20;
displayBalance();

break; }

case 20 : { dispenseProduct();
_balance = 0; welcome();
break; }

ks

52

“TRADITIONAL” IMPLEMENTATION (2)

public void addDime() {
switch (_balance) {

case @ : { _balance = 10;
displayBalance();

break; }

case 5 : { _balance = 15;
displayBalance();

break; }

case 10 : { _balance = 20;
displayBalance();

break; }

case 15 : { dispenseProduct();
_balance = 0; welcome();

break; }

case 20 : { dispenseProduct();
refund(5); _balance = 0; welcome();
break; }

}

public void addQuarter() {

switch (_balance) {

case @ : { dispenseProduct();
_balance = 0; welcome();

break; }

case 5 : { dispenseProduct();
refund(5); _balance = 0; welcome();
break; }

case 10 : { dispenseProduct();
refund(10); _balance = 0; welcome();
break; }

case 15 : { dispenseProduct();
refund(15); _balance = 0; welcome();
break; }

case 20 : { dispenseProduct();
refund(20); _balance = 0; welcome();
break; }

}

CLIENT CODE

public class (Client {

public static void main(String[] args) {

VendingMachine v
v.addNickel();
v.addDime();
v.addNickel();
v.addQuarter();

new VendingMachine();

Welcome. Please enter $0.25 to buy product.
balance 1s now: 5

balance 1s now: 15

balance 1s now: 20

dispensing product...

refunding: 20

Welcome. Please enter $0.25 to buy product.

54

PROBLEMS WITH THIS CODE

» State-specific behavior scattered over ditferent conditionals
» changing one state’s behavior requires visiting each of these

» Inflexible: adding a state requires invasive change
= Would need to edit each conditional

= approach tends to lead to large monolithic classes

55

STATE-BASED VENDINGMACHINE

interface VendingMachineState {
vold addNickel(VendingMachine v);
vold addDime(VendingMachine v);
void addQuarter(VendingMachine v);
int getBalance();

h

public class VendingMachine {
public VendingMachine() {
_state = Credit@.1instance(this);

¥
// methods welcome(), displayBalance() etc. as before

vold changeState(VendingMachineState s) {

_state = s; displayBalance();
ks
public void addNickel() { _state.addNickel(this); }
public void addDime() { _state.addDime(this); }
public void addQuarter() { _state.addQuarter(this); }
private VendingMachineState _state;

56

CONCRETE STATE CLASSES

class Credit@ implements VendingMachineState {

private Credit0(){ }
private static Credit@® _thelnstance;
static Credit@® instance(VendingMachine v) {
1f (_theInstance == null) {
_theInstance = new Credit@();
ks

v.welcome(); return _theInstance;
ks
public void addNickel(VendingMachine v) {
v.changeState(Credit5.1nstance()); }
public void addDime(VendingMachine v) {
v.changeState(Creditl@.instance()); }
public void addQuarter(VendingMachine v) {
v.dispenseProduct();
v.changeState(Credit@.instance(v)); }
public int getBalance() { return 0; }

class Credit20 implements VendingMachineState {

private Credit200){ }
private static Credit20 _thelnstance;
static Credit20 instance(){
1f (_theInstance == null){
_theInstance = new Credit20();
¥

return _theInstance;

}

public void addNickel(VendingMachine v) {
v.dispenseProduct();
v.changeState(Credit@.instance(v)); }

public void addDime(VendingMachine v) {
v.dispenseProduct(); v.refund(5);
v.changeState(Credit@.instance(v)); }

public void addQuarter(VendingMachine v) {
v.dispenseProduct(); v.refund(20);
v.changeState(Credit@.instance(v)); }

public int getBalance(){ return 20; }

57

STATE: BENEFITS

» localizes state-specific behavior, and partitions behavior for different
states

= |eads to several small classes instead of one large class
» natural way of partitioning the code
= avoids (long) if/switch statements with state-specific control flow

= also more extensible---you don't have to edit your switch statements
after adding a new state

= makes state transitions explicit

= simply create a new ConcreteState object, and assign it to the state
field in Context

» state-objects can be shared
= and common functionality can be placed in abstract class State

58

STATE: IMPLEMENTATION ISSUES

= Who defines the state transitions?
= not defined by the pattern

= usually done by the various Concretestates
= when to create ConcreteStates?
= ONn demand or ahead-of-time

= choice depends on how often ConcreteStates get created, and cost
of creating them

= can use Singleton if ConcreteStates don't have any fields

59

OTHER BEHAVIORAL PATTERNS

. cy g Eavoid coupling the sender of a request to its receiver by giving more
Chain of ResponS|b|I|ty .than one object a chance to handle the request

. given a language, define a representation for its grammar along with an

Interpreter interpreter that uses the representation to interpret sentences in the
language
Mediator define an object that encapsulates how objects interact
. without violating encapsulation, capture and externalize an object’s
Memento -

.internal state so that the object can be restored to this state later.

..

 define a family of algorithms, encapsulate each one, and make them
:interchangeable

..

 define the skeleton of an algorithm in an operation, deferring some
Template Method steps to subclasses

60

DESIGN PATTERNS: GENERAL REMARKS

design patterns are not the solution to all problems!

In general, don't try to apply as many patterns as possible. Instead, try to:
= recognize situations where patterns are useful
= Use key patterns to define global system architecture

document your use of patterns, use names that reflect participants in
patterns

reusable software often has to be refactored

= design patterns are often the “target” of refactorings that aim at
making the system more reusable

= next week: more about refactoring...

61

