
DESIGN PATTERNSF. Tip and  
M. Weintraub

Thanks go to Andreas Zeller for allowing incorporation of his materials

STRUCTURAL PATTERNS

▪ concerned with how classes and objects are composed to form larger
structures
▪ structural class patterns: use inheritance to compose interfaces or

implementations
▪ structural object patterns: describe ways to compose objects to

realize new functionality
■ Adapter
■ Composite
■ Proxy
■ Flyweight
■ Façade
■ Bridge
■ Decorator

2

ADAPTER
▪ converts the interface of a class into another interface that clients expect
▪ Class Adapter: uses (multiple) inheritance
▪ Object Adapter: relies on object composition

▪ use Adapter when:
▪ you want to use an existing class, and its interface does not match the

one you need
▪ (object adapter) you need to use several existing subclasses, but it’s

impractical to adapt their interface by subclassing every one.

3

ADAPTER: PARTICIPANTS
▪ Target

▪ defines the interface that you
need to implement

▪ Client
▪ collaborates with objects

conforming to the Target
interface

▪ Adaptee
▪ defines an existing interface

that needs adapting

▪ Adapter
▪ adapts the interface of

Adaptee to the Target interface

class adapter

object adapter
4

ADAPTER: EXAMPLE

▪ suppose we have a Client application that uses a Stack, with
operations push(), pop(), size()

▪ instead of implementing Stack from scratch, we want to use an
existing Vector that provides almost the right functionality
▪ Vector has methods elementAt(), insertElementAt(), size()

▪ solution: create a StackAdapter class
▪ (class adapter) extends Vector, implements Stack
▪ (object adapter) has pointer to a Vector, implements Stack

5

CLASS ADAPTER

public class Client {
 public static void main(String[] args) {
 Stack<String> s =
 new StackAdapter<String>();
 s.push("foo");
 s.push("bar");
 System.out.println(s.pop());
 System.out.println(s.pop());
 }
}

interface Stack<T> {
 public void push(T t);
 public T pop();
 public int size();
}

class StackAdapter<T> extends Vector<T>
 implements Stack<T> {
 StackAdapter(){
 super();
 }
 public void push(T t){
 insertElementAt(t, size());
 }
 public T pop(){
 T t = elementAt(size()-1);
 removeElementAt(size()-1);
 return t;
 }

 // inherit size() method from Vector
}

6

OBJECT ADAPTER

public class Client {
 public static void main(String[] args) {
 Stack<String> s =
 new StackAdapter<String>();
 s.push("foo");
 s.push("bar");
 System.out.println(s.pop());
 System.out.println(s.pop());
 }
}

interface Stack<T> {
 public void push(T t);
 public T pop();
 public int size();
}

class StackAdapter<T> implements Stack<T> {
 StackAdapter() {
 _adaptee = new Vector<T>();
 }
 public void push(T t) {
 _adaptee.insertElementAt(t, _adaptee.size());
 }
 public T pop() {
 T t = _adaptee.elementAt(_adaptee.size()-1);
 _adaptee.removeElementAt(_adaptee.size()-1);
 return t;
 }
 public int size() {
 return _adaptee.size();
 }
 private Vector<T> _adaptee;
}

7

ADAPTER: TRADEOFFS

▪ class adapters:
▪ adapts Adaptee to Target by committing to a specific Adapter class;

will not work when we want to adapt a class and its subclasses
▪ lets Adapter override/reuse some of Adaptee’s behavior
▪ introduces only one object, no additional pointer indirection is

needed to get to Adaptee

▪ object adapters:
▪ lets a single Adapter work with many Adaptees (and change them

at run time)
▪ makes it harder to override Adaptee behavior (requires subclassing

of Adaptee, and making Adapter refer to the subclass)

8

BRIDGE

▪ decouple an abstraction from its implementation so that the two can
vary independently

▪ use Bridge when:
▪ you want to avoid a permanent binding between an abstraction and

its implementation
▪ both the abstractions and implementations need to be subclassed

and you want to avoid a proliferation of classes caused by
extension in multiple, orthogonal extensions

▪ you want to share an implementation among multiple objects, and
hide this fact from the client

9

BRIDGE: WHEN TO APPLY?

▪ when extending a class hierarchy in multiple “dimensions” leads to:
▪ an combinatorial explosion in number of classes
▪ difficulties in sharing of implementations
▪ exposure of platform dependencies to clients

10

BRIDGE: PARTICIPANTS
▪ Abstraction

▪ defines the abstraction’s
interface

▪ maintains a reference to an
object of type Implementor

▪ RefinedAbstraction
▪ extends the interface defined

by Abstraction
▪ Implementor

▪ defines the interface for the
implementation classes;
doesn’t have to match
interface of Abstraction

▪ ConcreteImplementor
▪ implements the Implementor

interface and defines its
concrete implementation

11

BRIDGE: EXAMPLE
public enum StackType {
 Array,
 LinkedList
}

public class Client {
 public static void main(String[] args) {
 Stack<String> s =
 new Stack<String>(StackType.Array);
 s.push("foo");
 s.push("bar");
 System.out.println(s.pop());
 System.out.println(s.pop());
 }
}

class Stack<T> {
 Stack(StackType implType){
 switch (implType){
 case LinkedList:
 _impl = new LinkedListBasedStack<T>();
 case Array:
 default:
 _impl = new ArrayBasedStack<T>();
 }
 }
 public void push(T t){ _impl.push(t); }
 public T pop(){ return _impl.pop(); }

 private StackImpl<T> _impl;
}

interface StackImpl<T> {
 public void push(T t);
 public T pop();
}

12

TWO IMPLEMENTATIONS
class ArrayBasedStack<T>
 implements StackImpl<T> {
 public void push(T t){
 if (!(_size == MAX_SIZE-1)){
 _elements[++_size] = t; }
 }
 public T pop(){
 if ((_size == -1)){ return null; }
 return _elements[_size--];
 }
 private final int MAX_SIZE = 100;
 private T[] _elements =
 (T[])new Object[MAX_SIZE];
 private int _size = -1;
}

class LinkedListBasedStack<T>
 implements StackImpl<T> {
 private class Node {
 // details omitted
 }
 public void push(T t){
 if (_tail == null){
 _tail = new Node(t);
 } else {
 _tail.next = new Node(t);
 _tail.next.prev = _tail;
 _tail = _tail.next;
 }
 }
 public T pop(){
 if (_tail == null) return null;
 T ret = _tail.value;
 _tail = _tail.prev;
 return ret;
 }
 private Node _tail;
}

13

BRIDGE VS. ADAPTER

▪ Adapter and Bridge lead to code that looks quite similar.

▪ However, they serve different purposes:
▪ Adapter is retrofitted to make existing unrelated classes work

together.
▪ Bridge is designed up-front to let the abstraction and the

implementation vary independently.

14

COMPOSITE

▪ Compose objects into tree structures to represent part-whole
hierarchies.

▪ Composite lets you treat individual objects and compositions of
objects uniformly.

▪ Apply Composite when:
▪ you want to model part-whole hierarchies of objects
▪ you want clients to be able to ignore the difference between

compositions of objects and individual objects

15

COMPOSITE: PARTICIPANTS
▪ Component

▪ declares common interface
▪ implements default behavior
▪ declares interface for accessing/

managing child components and
(optional) for accessing parent

▪ Leaf
▪ represents leaf objects
▪ defines behavior for primitive objects

▪ Composite
▪ defines behavior for components

with children
▪ stores child components
▪ implements child-related operations

in Component
▪ Client

▪ manipulates objects via the
Component interface

16

COMPOSITE EXAMPLE: UNIX FILE SYSTEMS

▪ a Node (Component) is a:
▪ File (Leaf) or a
▪ Directory (Composite)

▪ the find command can be used to find files with a particular name
▪ uses auxiliary operation getAbsoluteName()

▪ usage: find <directory> -name <pattern>
▪ find . -name “*.java” finds all Java source files in the current

directory and its subdirectories and prints their absolute name
▪ we consider a simplified version: a method Node.find(s) that

finds all the files whose name contains s as a substring.

17

CLIENT PROGRAM
public class Main {
 public static void main(String[] args){
 Directory root = new Directory("");
 Directory usr = new Directory("usr", root);
 new File("core", root);
 new File("adm", usr);
 new Directory("foo", usr);
 new File("bar1", usr);
 new File("xbar2", usr);
 new Directory("yybarzz3", usr);
 System.out.println(root.find("bar"));
 }
}

[/usr/bar1, /usr/xbar2, /usr/yybarzz3/]

prints

18

/

core
usr

adm foo

bar1

xbar2 yybarzz3

NODE, FILE, DIRECTORY
abstract class Node {
 Node(String name, Directory parent) { … }
 public String getAbsoluteName() { … }
 public String toString() {
 return getAbsoluteName();
 }
 public abstract List<String> find(String s);
 protected String _name;
 protected Directory _parent;
}

class File extends Node {
 File(String n, Directory p){
 super(n,p);
 }
 public List<String> find(String s){
 List<String> result =
 new ArrayList<String>();
 if (_name.indexOf(s) != -1){
 result.add(this.getAbsoluteName());
 }
 return result;
 }
}

class Directory extends Node {

 Directory(String n){ this(n, null); }
 Directory(String n, Directory p){ … }
 public String getAbsoluteName(){ … }
 public void add(Node n){
 _children.add(n);
 }

 public List<String> find(String s){
 List<String> result =
 new ArrayList<String>();
 if (_name.indexOf(s) != -1){
 result.add(getAbsoluteName());
 }
 for (Node child : _children){
 result.addAll(child.find(s));
 }
 return result;
 }
 private List<Node> _children;
}

19

COMPOSITE: CONSIDERATIONS
▪ composite makes clients more uniform

▪ some operations only make sense for leaf or composite classes, but not for both
▪ composite makes it easy to add new kinds of components

▪ implementation issues:
▪ need explicit parent reference in Component
▪ sharing components for efficiency (→Flyweight)
▪ storage management issues
▪ child ordering relevant or not (→Iterator)
▪ caching traversal/search information for efficiency

20

PROXY

▪ Proxy provides a surrogate or placeholder for another object to control
access to it

▪ Apply Proxy when:
▪ you need a local representative for an object that lives in a different

address space (remote proxy)
▪ you want to avoid the creation of expensive objects until they are

really needed (virtual proxy)
▪ you want to control access to an object (protection proxy)
▪ you need a smart pointer that performs additional actions when an

object is accessed (e.g., reference-counting, loading persistent
objects into memory)

21

PROXY: PARTICIPANTS
▪ Proxy

▪ maintains reference that lets proxy access
real subject

▪ provides an interface identical to the
subject’s

▪ controls access to the real subject, and may
be responsible for creating & deleting it

▪ other responsibilities:
▪ remote proxies: encoding and

transferring request
▪ virtual proxies: caching information
▪ protection proxies: check access

permissions
▪ Subject

▪ defines the common interface for
RealSubject and Proxy so that Proxy can be
used anywhere RealSubject is used

▪ RealSubject
▪ defines the real object represented by the

Proxy 22

PROXY EXAMPLE: SYMBOLIC LINKS
▪ in Unix, you can create symbolic links to files and directories with the

“ln” command
▪ syntax: ln –s <directory> <linkName>

▪ after this command, you can access the directory also via the link

▪ you can tell the find command to follow symbolic links by specifying
the –follow option

▪ we now extend the File System example with symbolic links,
implemented using Proxy

23

LINK
class Link extends Node {
 Link(String n, Node w, Directory p){ … }
 public String getAbsoluteName(){ … }

 public Vector<String> find(String s){
 Vector<String> result = new Vector<String>();
 if (_name.indexOf(s) != -1){
 result.add(getAbsoluteName());
 }
 Vector<String> resultsViaLink = _realNode.find(s);
 int n = _realNode.getAbsoluteName().length();
 for (String r : resultsViaLink){
 String name = super.getAbsoluteName() + "/" + r.substring(n);
 result.add(name);
 }
 return result;
 }

 private Node _realNode;
}

UPDATED CLIENT PROGRAM
public class Main {
 public static void main(String[] args){
 Directory root = new Directory("");
 new File("core", root);
 Directory usr = new Directory("usr", root);
 new File("adm", usr);
 Directory foo = new Directory("foo", usr);
 new File("bar1", foo);
 new File("xbar2", foo);
 new File("yybarzz3", foo);
 Link link = new Link("link", usr, root);
 new Link("link2", link, root);
 System.out.println(root.find("bar"));
 }
}

[/usr/foo/bar1, /usr/foo/xbar2, /usr/foo/yybarzz3, /link/foo/bar1, /link/foo/xbar2,
 /link/foo/yybarzz3, /link2/foo/bar1, /link2/foo/xbar2, /link2/foo/yybarzz3]

/

core
usr

adm foo

bar1

xbar2
yybarzz3

link

link2

25

BEHAVIORAL PATTERNS

▪ concerned with algorithms and the assignment of responsibilities
between objects
▪ behavioral class patterns use inheritance to distribute behavior

between classes
▪ behavioral object patterns use composition to distribute behavior

between objects

26

▪ Observer
▪ State
▪ Strategy
▪ Template Method
▪ Visitor

▪ Chain of Responsibility
▪ Command
▪ Interpreter
▪ Iterator
▪ Mediator
▪ Memento

ITERATOR

▪ provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation

▪ apply Iterator for the following purposes:
▪ to access an aggregate object’s contents without exposing its

internal representation
▪ to support multiple traversals of aggregate objects
▪ to provide a uniform interface for traversing different aggregate

structures (support polymorphic iteration)

27

1 2 3 4 5

ITERATOR: PARTICIPANTS
▪ Iterator

▪ defines an interface for
accessing and traversing
elements

▪ ConcreteIterator
▪ implements the Iterator interface
▪ keeps track of the current

position in the traversal of the
aggregate

▪ Aggregate
▪ defines an interface for creating

an Iterator object
▪ ConcreteAggregate

▪ implements the Iterator creation
interface to return an instance of
the proper ConcreteIterator

28

ITERATOR: EXAMPLE
▪ use Iterator to allow clients to iterate through the Files in a directory
▪ without exposing Directory’s internal structure to the client

29

interface Iterator<T> {
 void first();
 void next();
 boolean isDone();
 T current();
}

class Directory extends Node {
 …
 private class DirectoryIterator implements Iterator<Node> {
 private List<Node> _files;
 private int _fileCnt;

 DirectoryIterator(Directory d) {
 _files = d._children; _fileCnt = 0;
 }
 public void first() { _fileCnt = 0; }
 public void next() { _fileCnt++; }
 public boolean isDone() {
 return _fileCnt == _files.size();
 }
 public Node current() {
 return _files.get(_fileCnt);
 }
 }
 …

CLIENT
public class Main {
 public static void main(String[] args){
 Directory root = new Directory("");
 Directory usr = new Directory("usr", root);
 new File("core", root);
 new File("adm", usr);
 new Directory("foo", usr);
 new File("bar1", usr);

 // use iterator to print contents of /usr
 Iterator<Node> it = usr.iterator();
 for (it.first(); !it.isDone(); it.next()){
 Node n = it.current();
 System.out.println(n.getAbsoluteName());
 }
 }
}

/usr/adm
/usr/foo/
/usr/bar1

prints:

/

core
usr

adm foo bar1

30

ITERATOR: CONSIDERATIONS
▪ two kinds of iterators:
▪ internal iterators: iteration controlled by iterator itself. Client hands

iterator operation to perform; iterator applies op. to each element
▪ external iterators: client controls iteration (by requesting next

element)
▪ some danger associated with external iterators
▪ e.g., an element of the underlying collection may be removed during

iteration. Iterators that can deal with this are called robust.
▪ iterators may support additional operations such as skipTo(int) or
remove()
▪ the Java libraries define an interface java.util.Iterator with
hasNext(), next(), remove() methods

▪ if remove() is not supported by a ConcreteIterator, an
UnsupportedOperationException is thrown

31

OBSERVER

▪ Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated
automatically

▪ apply Observer when
▪ when an abstraction has two aspects, one dependent on the other.
▪ when a change to one object requires changing others
▪ when an object should be able to notify other objects without

making assumptions about the identity of these objects

32

OBSERVER: PARTICIPANTS
▪ Subject

▪ knows its observers. any number of
observers may observe a subject

▪ provides an interface for attaching/
detaching observers

▪ Observer
▪ defines an updating interface for objects

that should be notified of changes
▪ ConcreteSubject

▪ stores state of interest to ConcreteObserver
objects

▪ sends a notification to its observers when
state changes

▪ ConcreteObserver
▪ maintains reference to a ConcreteSubject

object
▪ stores state that should stay consistent with

subject’s
▪ implements the Observer updating interface

to keep its state consistent with the subject’s
33

OBSERVER: SEQUENCE DIAGRAM

34

OBSERVER: EXAMPLE
▪ add FileObservers to our FileSystem example.
▪ add a method write(String) to class File to model operations

that change a File’s contents
▪ associate FileObservers with Files; notify these after each write
▪ FileObservers print a warning message that the file has changed

35

interface Observer {
 public void update();
}

class FileObserver implements Observer {
 FileObserver(File f){
 f.attach(this);
 _subject = f;
 }
 public void update(){
 System.out.println("file " +
 _subject.getAbsoluteName() + " has changed.");
 }
 private File _subject;
}

ATTACHING AND NOTIFYING OBSERVERS
class File extends Node {
 File(String n, Directory p){
 super(n,p);
 }
 public void attach(Observer o){
 if (!_observers.contains(o)){
 _observers.add(o);
 }
 }
 public void detach(Observer o){
 _observers.remove(o);
 }
 public void notifyObservers(){
 for (Observer obs : _observers){
 obs.update();
 }
 }
 public void write(String s){
 notifyObservers();
 }

 private List<Observer> _observers = new ArrayList<Observer>();
}

36

UPDATED CLIENT
public class Main {
 public static void main(String[] args){
 Directory root = new Directory("");
 File core = new File("core", root);

 // create observer for file core
 FileObserver obs = new FileObserver(core);
 core.write("hello");
 core.write("world");
 }
}

file /core has changed.
file /core has changed.

prints

37

OBSERVER: CONSIDERATIONS
▪ who triggers the update?

▪ state-changing methods call notify() method, or
▪ make clients responsible for calling notify()

▪ avoiding observer-specific update protocols
▪ push model: subject sends its observers detailed information about the

changes
▪ pull model: subject only informs observers that state has changed;

observers need to query subject to find out what has changed

▪ specifying modifications of interest explicitly
▪ when observer is interested in only some of the state-changing events

▪ encapsulating complex update semantics
▪ for highly complex relationships between subject and observer, introduce a

ChangeManager class to coordinate
38

VISITOR
▪ represent an operation to be performed on a set of “related classes”

without changing the classes.

▪ apply Visitor when:
▪ a hierarchy contains many classes with differing interfaces, and you

want to perform operations on these objects that depend on their
concrete classes

▪ many distinct and unrelated operations need to be performed on
objects, and you want to avoid polluting their classes with these
operations

▪ the classes in the object structure rarely change, but you frequently
want to add new operations on the structure

39

VISITOR: PARTICIPANTS
▪ Visitor

▪ declares a visit() operation for
each class of ConcreteElement in the
object structure

▪ ConcreteVisitor
▪ implements each operation declared

by Visitor
▪ Element

▪ defines an operation
accept(Visitor)

▪ ConcreteElement
▪ implements operation accept(Visitor)

40

VISITOR: SEQUENCE DIAGRAM

41

VISITOR: EXAMPLE
▪ final variation on the FileSystem example
▪ based on solution with links, iterators
▪ use Visitor to implement variant of Unix “du” command (du counts the

size of a directory and its subdirectories, usually in 512-byte blocks)

▪ steps:
▪ create interface Visitor with methods visit(File),
visit(Directory), visit(Link)

▪ create class DuVisitor that implements Visitor
▪ declare accept(Visitor) method in class Node, implement in
File, Directory, Link

42

STEP 1: ADDING ACCEPT() METHODS

class File extends Node {
 …
 public void accept(Visitor v){
 v.visit(this);
 }
 …
}

class Link extends Node {
 …
 public void accept(Visitor v){
 v.visit(this);
 }
 …
}

class Directory extends Node {
 …
 public void accept(Visitor v){
 v.visit(this);
 }
 …
}

43

STEP 2: DEFINE A VISITOR
interface Visitor {
 public void visit(File f);
 public void visit(Directory d);
 public void visit(Link l);
}

class DuVisitor implements Visitor {
 DuVisitor(){
 _nrFiles = 0; _nrDirectories = 0;
 _nrLinks = 0; _totalSize = 0;
 }
 public void visit(File f){
 _nrFiles++;
 _totalSize += f.size();
 }
 public void visit(Link l){
 _nrLinks++;
 }
 …

 …
 public void visit(Directory d){
 _nrDirectories++;
 Iterator<Node> it = d.iterator();
 for (it.first(); !it.isDone(); it.next()){
 Node n = it.current();
 if (n instanceof File){
 visit((File)n);
 } else if (n instanceof Directory){
 visit((Directory)n);
 } else if (n instanceof Link){
 visit((Link)n);
 }
 }
 }
 public void report(){
 System.out.println("files: " + _nrFiles);
 System.out.println("directories: " + _nrDirectories);
 System.out.println("links: " + _nrLinks);
 System.out.println("total size: " + _totalSize);
 }
 int _totalSize; int _nrFiles; int _nrLinks; int
_nrDirectories;
}

44

CLIENT
public class Main {
 public static void main(String[] args){
 Directory root = new Directory("");
 new File("core", root, "hello");
 Directory usr = new Directory("usr", root);
 new File("adm", usr, "there");
 new Directory("foo", usr);
 new File("bar1", usr, "abcdef");
 new File("xbar2", usr, "abcdef");
 new File("yybarzz3", usr, "abcdef");
 Link link = new Link("link", usr, root);
 new Link("link2", link, root);

 DuVisitor visitor = new DuVisitor();
 root.accept(visitor);
 visitor.report();
 }
}

files: 5
directories: 3
links: 2
total size: 28

45

prints:

VISITOR: CONSIDERATIONS
▪ requires ConcreteElement classes to expose enough state so Visitor

can do its job
▪ breaks encapsulation

▪ adding new operations is easy
▪ by defining new ConcreteVisitor

▪ adding new ConcreteElement classes is hard
▪ gives rise to new abstract operation on Visitor
▪ ...and requires implementation in every ConcreteVisitor

▪ Visitor not limited to a class hierarchy, can be applied to any collection
of classes
▪ provided they define accept() methods

STATE
▪ allow an object to change its behavior when its internal state changes

▪ use State when:
▪ an object’s behavior depends on its state
▪ operations have large conditional statements that depend on the

object’s state (the state is usually represented by one or more
enumerated constants)

47

STATE: PARTICIPANTS
▪ Context
▪ defines interface of interest

to clients
▪ maintains reference to a

ConcreteState subclass that
defines the current state

▪ State
▪ defines an interface for

encapsulating the behavior
associated with a particular
state of the Context

▪ ConcreteState subclasses
▪ each subclass implements

a behavior associated with
a state of the Context (by
overriding methods in State)

48

STATE: EXAMPLE

▪ example of a vending machine:
▪ product price is $0.25
▪ machine accepts any combination of nickels, dimes, and quarters
▪ customer enters coins; when credit reaches $0.25 product is

dispensed, and refund is given for the remaining credit.
▪ machine has display that shows the current balance

49

VENDING MACHINE: UML STATECHART DIAGRAM

50

“TRADITIONAL” IMPLEMENTATION

▪ use an integer value to represent the states
▪ more complex situations may require an enum or object

▪ methods addNickel(), addDime(), and addQuarter() model user
inserting coins

▪ methods refund(), displayBalance(), and dispenseProduct()
model system’s actions

▪ conditional logic (with if/switch statements) depending on current
state

51

“TRADITIONAL” IMPLEMENTATION
class VendingMachine {
 private int _balance;
 public VendingMachine() {
 _balance = 0; welcome();
 }
 void welcome() {
 System.out.println("Welcome.
 Please enter $0.25 to buy product.");
 }
 void dispenseProduct() {
 System.out.println("dispensing product...");
 }
 void displayBalance() {
 System.out.println("balance is now: " +
 _balance);
 }
 void refund(int i) {
 System.out.println("refunding: " + i);
 }
 …

 public void addNickel() {
 switch (_balance) {
 case 0 : { _balance = 5;
 displayBalance();
 break; }
 case 5 : { _balance = 10;
 displayBalance();
 break; }
 case 10 : { _balance = 15;
 displayBalance();
 break; }
 case 15 : { _balance = 20;
 displayBalance();
 break; }
 case 20 : { dispenseProduct();
 _balance = 0; welcome();
 break; }
 }
 }

 …

52

“TRADITIONAL” IMPLEMENTATION (2)
 …
 public void addDime() {
 switch (_balance) {
 case 0 : { _balance = 10;
 displayBalance();
 break; }
 case 5 : { _balance = 15;
 displayBalance();
 break; }
 case 10 : { _balance = 20;
 displayBalance();
 break; }
 case 15 : { dispenseProduct();
 _balance = 0; welcome();
 break; }
 case 20 : { dispenseProduct();
 refund(5); _balance = 0; welcome();
 break; }
 }
 }
 …

 …
 public void addQuarter() {
 switch (_balance) {
 case 0 : { dispenseProduct();
 _balance = 0; welcome();
 break; }
 case 5 : { dispenseProduct();
 refund(5); _balance = 0; welcome();
 break; }
 case 10 : { dispenseProduct();
 refund(10); _balance = 0; welcome();
 break; }
 case 15 : { dispenseProduct();
 refund(15); _balance = 0; welcome();
 break; }
 case 20 : { dispenseProduct();
 refund(20); _balance = 0; welcome();
 break; }
 }
 }
}

53

CLIENT CODE

public class Client {
 public static void main(String[] args) {
 VendingMachine v = new VendingMachine();
 v.addNickel();
 v.addDime();
 v.addNickel();
 v.addQuarter();
 }
} Welcome. Please enter $0.25 to buy product.

balance is now: 5
balance is now: 15
balance is now: 20
dispensing product...
refunding: 20
Welcome. Please enter $0.25 to buy product.

54

PROBLEMS WITH THIS CODE

▪ state-specific behavior scattered over different conditionals
▪ changing one state’s behavior requires visiting each of these

▪ inflexible: adding a state requires invasive change
▪ would need to edit each conditional

▪ approach tends to lead to large monolithic classes

55

STATE-BASED VENDINGMACHINE
interface VendingMachineState {
 void addNickel(VendingMachine v);
 void addDime(VendingMachine v);
 void addQuarter(VendingMachine v);
 int getBalance();
}

public class VendingMachine {
 public VendingMachine() {
 _state = Credit0.instance(this);
 }
 // methods welcome(), displayBalance() etc. as before

 void changeState(VendingMachineState s) {
 _state = s; displayBalance();
 }
 public void addNickel() { _state.addNickel(this); }
 public void addDime() { _state.addDime(this); }
 public void addQuarter() { _state.addQuarter(this); }
 private VendingMachineState _state;
}

56

CONCRETE STATE CLASSES

57

class Credit0 implements VendingMachineState {
 private Credit0(){ }
 private static Credit0 _theInstance;
 static Credit0 instance(VendingMachine v) {
 if (_theInstance == null) {
 _theInstance = new Credit0();
 }
 v.welcome(); return _theInstance;
 }
 public void addNickel(VendingMachine v) {
 v.changeState(Credit5.instance()); }
 public void addDime(VendingMachine v) {
 v.changeState(Credit10.instance()); }
 public void addQuarter(VendingMachine v) {
 v.dispenseProduct();
 v.changeState(Credit0.instance(v)); }
 public int getBalance() { return 0; }
}

class Credit20 implements VendingMachineState {
 private Credit20(){ }
 private static Credit20 _theInstance;
 static Credit20 instance(){
 if (_theInstance == null){
 _theInstance = new Credit20();
 }
 return _theInstance;
 }
 public void addNickel(VendingMachine v) {
 v.dispenseProduct();
 v.changeState(Credit0.instance(v)); }
 public void addDime(VendingMachine v) {
 v.dispenseProduct(); v.refund(5);
 v.changeState(Credit0.instance(v)); }
 public void addQuarter(VendingMachine v) {
 v.dispenseProduct(); v.refund(20);
 v.changeState(Credit0.instance(v)); }
 public int getBalance(){ return 20; }
}

STATE: BENEFITS

▪ localizes state-specific behavior, and partitions behavior for different
states
▪ leads to several small classes instead of one large class
▪ natural way of partitioning the code

▪ avoids (long) if/switch statements with state-specific control flow
▪ also more extensible---you don’t have to edit your switch statements

after adding a new state
▪ makes state transitions explicit
▪ simply create a new ConcreteState object, and assign it to the state

field in Context
▪ state-objects can be shared
▪ and common functionality can be placed in abstract class State

58

STATE: IMPLEMENTATION ISSUES

▪ who defines the state transitions?
▪ not defined by the pattern
▪ usually done by the various ConcreteStates

▪ when to create ConcreteStates?
▪ on demand or ahead-of-time
▪ choice depends on how often ConcreteStates get created, and cost

of creating them
▪ can use Singleton if ConcreteStates don’t have any fields

59

OTHER BEHAVIORAL PATTERNS

Chain of Responsibility avoid coupling the sender of a request to its receiver by giving more
than one object a chance to handle the request

Interpreter
given a language, define a representation for its grammar along with an
interpreter that uses the representation to interpret sentences in the
language

Mediator define an object that encapsulates how objects interact

Memento without violating encapsulation, capture and externalize an object’s
internal state so that the object can be restored to this state later.

Strategy define a family of algorithms, encapsulate each one, and make them
interchangeable

Template Method define the skeleton of an algorithm in an operation, deferring some
steps to subclasses

60

DESIGN PATTERNS: GENERAL REMARKS

▪ design patterns are not the solution to all problems!

▪ in general, don’t try to apply as many patterns as possible. Instead, try to:
▪ recognize situations where patterns are useful
▪ use key patterns to define global system architecture

▪ document your use of patterns, use names that reflect participants in
patterns

▪ reusable software often has to be refactored
▪ design patterns are often the “target” of refactorings that aim at

making the system more reusable
▪ next week: more about refactoring…

61

