
DESIGN PATTERNSF. Tip and  
M. Weintraub

Thanks go to Andreas Zeller for allowing incorporation of his materials

HISTORICAL PERSPECTIVE

▪ the term “design patterns” in Software Engineering was inspired by
reusable elements of design (“patterns”) in the field of architecture

▪ 1977 book “A Pattern Language: Towns, Buildings, Construction” by
Christopher Alexander et al.

▪ presents 253 patterns, covering advice on use of materials, physical
arrangements of architectural elements, etc.

▪ Examples:
173. GARDEN WALL 
174. TRELLISED WALK
159. LIGHT ON TWO SIDES OF EVERY ROOM
180. WINDOW PLACE

2

180. WINDOW PLACE

Everybody loves window seats, bay windows, and big windows with
low sills and comfortable chairs drawn up to them

In every room where you spend any length of time during the day,
make at least one window into a “window place”

Muster in der Architektur: Window Place

Everybody loves window seats, bay windows, and big windows
with low sills and comfortable chairs drawn up to them

In every room where you spend any length of time during the
day, make at least one window into a “window place”

low
sill

place

Window
place

3

WHAT IS THE DIFFERENCE BETWEEN EXPERIENCED
AND INEXPERIENCED SOFTWARE DESIGNERS?

▪ Experienced designers know from experience what works and
what doesn’t

▪ Often recognize “standard” design problems and apply “proven”
solutions to them

4

PATTERNS IN SOFTWARE DESIGN

▪ The “Gang of Four” (Gamma, Helm, Johnson, Vlissides) catalogued a
number of widely used patterns in software design

5

REUSING EXPERIENCE: DESIGN PATTERNS

In other words: a design pattern is a generalized and reusable solution to
a similar set of problems. Design patterns are abstract and must be
tailored or adapted to each situation.

design patterns = descriptions of communicating
objects and classes, that have been adapted to

solve a design problem in a specific context.

6

CLASS VS. INTERFACE INHERITANCE

▪ class inheritance defines an object’s implementation in terms of
another object’s implementation
▪ extend an application’s functionality by reusing functionality in

parent classes (code and representation sharing)
▪ lets you get new implementations almost for free, inheriting most of

what you need from existing classes

▪ interface inheritance describes when an object can be used in place
of another
▪ clients remain unaware of specific types of objects → greatly

reduces dependencies between subsystems
▪ reduces the impact of changes

7

MECHANISMS FOR REUSING FUNCTIONALITY
class inheritance: define implementation of one class in terms of another
▪ often referred to as white-box reuse: internals of parent class visible

to extending class
 “class inheritance breaks encapsulation”

object composition: compose objects to get new, more complex
functionality
▪ implemented by giving objects references to other objects; access

these objects via interfaces
▪ requires that objects have well-defined interfaces
▪ often called black-box reuse: no internal details of objects are

visible to the class that uses them
 “composition does not break encapsulation”

8

CLASS INHERITANCE: PROS & CONS
Advantages

1. directly supported by the
programming language; easy to
use

2. easy to modify the reused
implementation (by overriding a
few methods)

Disadvantages

1. cannot change inherited
functionality at run-time (inheritance
is fixed at compile-time)

2. parent classes define at least part
of their subclasses’ physical
representation, and subclasses are
exposed to details of their parent’s
implementation

3. implementation of subclass
becomes very tightly coupled with
implementation of parent

4. change in parent is likely to require
changes in subclass

9

PRINCIPLES OF OBJECT-ORIENTED DESIGN

Program to an interface, not an implementation

Favor object composition over class inheritance

10

CLASS INHERITANCE

▪ delegation is an alternative to inheritance:
▪ two objects are involved:
▪ a receiving object delegates an operation to its delegate
▪ analogy: a subclass that defers a request to its parent class

class C {
 void f(){
 /* do something */
 }
}
class D extends C {
 void f(){
 super.f();
 /* do other stuff */
 }
}

11

DELEGATION
class C {
 C(){
 d = new D();
 }

 void f(){
 d.f();
 }

 private D d;
}

class D {
 public void f() {
 /* do the real work */
 }
}

forwarding method

▪ delegation is an alternative to inheritance:
▪ two objects are involved:
▪ a receiving object delegates an operation to its delegate
▪ analogy: a subclass that defers a request to its parent class

12

DELEGATION

class C {
 C(){
 d = new D();
 }

 void f(){
 d.f();
 }

 private D d;
}

class D {
 public void f() {
 /* do the real work */
 }
}

forwarding method

This design breaks encapsulation: C depends on D’s implementation!
13

DELEGATION

class C {
 C(){
 i = new D();
 }

 void f(){
 i.f();
 }

 private I i;
}

interface I {
 public void f();
}

class D implements I {
 public void f() {
 /* do the real work */
 }
}

The use of an interface removes C’s dependency on D’s implementation details!
14

DELEGATION

class C {
 C(){
 i = new D();
 }

 void f(){
 i.f();
 }

 void update(I i){
 this.i = i;
 }

 private I i;
}

interface I {
 public void f();
}

class D implements I {
 public void f() {
 /* do the real work */
 }
}

DELEGATION EXAMPLE
import java.util.Vector;

public class Stack<T> {

 public Stack(){
 this.v = new Vector<T>();
 }

 public void push(T t){
 v.add(t);
 }

 public T pop(){
 // throw exception if empty
 return v.remove(v.size()-1);
 }

 private Vector<T> v;
}

ABUSING INHERITANCE FOR THE SAME
PURPOSE

import java.util.Vector;

public class BadStack<T> extends Vector<T> {

 public BadStack(){
 // no need to create a Vector..
 }

 public void push(T t){
 add(t);
 }

 public T pop(){
 // throw exception if empty
 return remove(size()-1);
 }

}

17

ABUSING INHERITANCE FOR THE SAME
PURPOSE

import java.util.Vector;

public class BadStack<T> extends Vector<T> {

 public BadStack(){
 // no need to create a Vector..
 }

 public void push(T t){
 add(t);
 }

 public T pop(){
 // throw exception if empty
 return remove(size()-1);
 }

}

Class Vector<E> offers two methods that
come along via inheritance:
E remove(int index)
Removes the element at the specified
position in this Vector

Void removeElementAt(int index)
Deletes the component at the specified index.

Now your stack offers one the chance to
violate the semantics of the stack…

18

THE DEVELOPERS OF THE JAVA LIBRARIES
ACTUALLY MADE THIS MISTAKE..
package java.util;

/**
 * The <code>Stack</code> class represents a last-in-first-out
 * (LIFO) stack of objects. It extends class <tt>Vector</tt> with five
 * operations that allow a vector to be treated as a stack. The usual
 * <tt>push</tt> and <tt>pop</tt> operations are provided, as well as a
 * method to <tt>peek</tt> at the top item on the stack, a method to test
 * for whether the stack is <tt>empty</tt>, and a method to <tt>search</tt>
 * the stack for an item and discover how far it is from the top.
 * <p>
 * When a stack is first created, it contains no items.
 *
 * <p>A more complete and consistent set of LIFO stack operations is
 * provided by the {@link Deque} interface and its implementations, which
 * should be used in preference to this class. For example:
 * <pre> {@code
 * Deque<Integer> stack = new ArrayDeque<Integer>();}</pre>
 *
 * @author Jonathan Payne
 * @since JDK1.0
 */
public
class Stack<E> extends Vector<E> {
 /**
 * Creates an empty Stack.
 */
 public Stack() {
 }

 /**
 * Pushes an item onto the top of this stack. This has exactly
 * the same effect as:
 * <blockquote><pre>
 * addElement(item)</pre></blockquote>
 *
 * @param item the item to be pushed onto this stack.
 * @return the <code>item</code> argument.
 * @see java.util.Vector#addElement
 */
 public E push(E item) {
 addElement(item);

 return item;
 }
 ….

This could not be undone, because that would break backwards-compatibility..

19

WHY USE DELEGATION?

▪ inheritance can be more convenient:
▪ only define method f() once
▪ no need to forward calls
▪ somewhat more efficient

▪ however, it is less flexible:
▪ cannot change the implementation of f() after creating the object
▪ in languages with single inheritance, you can only inherit methods

from one superclass

20

TRUE DELEGATION
▪ with inheritance, the method in the superclass can use dynamic

dispatch to invoke methods in a subclass

▪ with delegation, this requires some extra work:
▪ pass receiving object’s this pointer as argument to the delegate
▪ delegate invokes methods on this reference when it needs to invoke

methods on receiving object

▪ this form of delegation is called true delegation
▪ example of true delegation: “State” design pattern (p.305 in GoF book)

21

RULE OF THUMB FOR WHEN TO USE
INHERITANCE VERSUS DELEGATION

use inheritance for

▪ is-a relationships that don’t
change over time

▪ situations where the class
containing the actual
operation is abstract

use delegation for

▪ has-a, part-of relationships
▪ is-a-role-played-by relationships
▪ relationships that change over time
▪ situations where multiple

inheritance would be needed (in
languages like Java that doe not
allow MI)

22

DESIGNING FOR CHANGE

▪ many design patterns introduce flexibility to avoid common causes
of redesign such as:
▪ creating an object by specifying a class explicitly
▪ dependence on specific operations
▪ dependence on hardware/software platform
▪ dependence on object representations or implementations
▪ algorithmic dependencies
▪ tight coupling
▪ extending functionality by subclassing
▪ inability to alter classes conveniently

23

THE ELEMENTS OF A PATTERN

A design pattern has 4 elements:
1. a name

• e.g, “Abstract Factory” or “Visitor”
2. the problem

• that the pattern addresses
3. the solution

• the program constructs that are part of the pattern
4. the consequences

• the results and tradeoffs of applying the pattern

Key considerations:
1. problem & solution have been observed in practice
2. choice of implementation language important

24

CLASSIFYING DESIGN PATTERNS
1. purpose: what a pattern does
a) creational: concerned with creation of objects
b) structural: related to composition of classes or objects
c) behavioral: related to interaction and distribution of responsibility

2. scope
a) class-level: concerned with relationship between classes and

their subclasses
b) object-level: concerned with object relationship (more dynamic,

may be changed at run-time)

25

GOF DESIGN PATTERNS CLASSIFIED

creational structural behavioral

class Factory Method Adapter (class) Interpreter
Template
Method

object
Abstract Factory

Builder
Prototype
Singleton

Adapter
(object)
Bridge

Composite
Decorator
Façade

Flyweight
Proxy

Chain of Resp.
Command

Iterator
Mediator
Memento
Observer

State
Strategy
Visitor

26

CREATIONAL PATTERNS

▪ purpose
▪ abstract the process of creating objects
▪ make a system unaware of how objects are created, composed,

and represented

▪ what they do
▪ encapsulate knowledge about which concrete classes a system

uses (access created objects via interfaces)
▪ hide how instances are created

▪ provide flexibility w.r.t.
▪ types of created objects
▪ responsibility for creation
▪ how and when objects are created

27

CREATIONAL PATTERNS

▪ Abstract Factory
▪ Builder
▪ Factory Method
▪ Prototype
▪ Singleton

28

EXAMPLE* TO ILLUSTRATE VARIOUS
CREATIONAL PATTERNS

▪ simulation of “maze” computer game. Objectives:
▪ find your way out of a maze
▪ solve problems
▪ create map

▪ a Maze consists of a number of Rooms
▪ each Room has 4 sides: North, South, East, West
▪ on each side of a room is a Door or a Wall

▪ abstract superclass MapSite of Room, Door, Wall has method enter()
▪ behavior depends on the kind of subclass

▪ class MazeGame has static method createMaze() for creating a Maze

*adapted from Gamma, Helm, Johnson, Vlissides: “Design Patterns: Elements of Reusable Object-Oriented Software”
29

UML DIAGRAM FOR MAZE GAME

30

MAZE, MAPSITE, DIRECTION
class Maze {

Maze() {
System.out.println("creating a Maze");

}

void addRoom(Room r) {
if (!_rooms.contains(r)) {

_rooms.add(r);
}

}

private Set<Room> _rooms = new HashSet<Room>();
}

public abstract class MapSite {
// enter() method omitted

}

public enum Direction {
North, South, East, West

}
31

class Room extends MapSite {
Room() {

_roomNr = _roomCnt++;
System.out.println("creating

 Room #" + _roomNr);
}

void setSide(Direction d, MapSite site) {
switch(d){
case North:

_northSide = site;
case South:

_southSide = site;
case East:

_eastSide = site;
case West:

_westSide = site;
}
System.out.println("setting " +

 d.toString() + " side of “ +
 this.toString() + " to " +
 site.toString());

}
 …

ROOM
…

 MapSite getSide(Direction d) {
MapSite result = null;
switch(d){
case North:

result = _northSide;
case South:

result = _southSide;
case East:

result = _eastSide;
case West:

result = _westSide;
}
return result;

}
 public String toString() {

return "Room #" + new Integer(_roomNr).toString();
}

private int _roomNr;
private static int _roomCnt = 1;
private MapSite _northSide;
private MapSite _southSide;
private MapSite _eastSide;
private MapSite _westSide;

}
32

WALL
class Wall extends MapSite {

Wall() {
_wallNr = _wallCnt++;
System.out.println("creating Wall #" + new Integer(_wallNr).toString());

}

public String toString() {
return "Wall #" + new Integer(_wallNr).toString();

}

private int _wallNr;
private static int _wallCnt = 1;

}

33

DOOR
class Door extends MapSite {

Door(Room r1, Room r2) {
_doorNr = _doorCnt++;
System.out.println("creating a Door #" + _doorNr + " between " + r1

+ " and " + r2);
_room1 = r1;
_room2 = r2;

}

public String toString() {
return "Door #" + new Integer(_doorNr).toString();

}

private static int _doorCnt = 1;
private int _doorNr;
private Room _room1;
private Room _room2;

}

34

MAZEGAME
public class MazeGame {

public Maze createMaze() {
Maze aMaze = new Maze();
Room r1 = new Room();
Room r2 = new Room();
Door theDoor = new Door(r1, r2);
aMaze.addRoom(r1);
aMaze.addRoom(r2);
r1.setSide(Direction.North, new Wall());
r1.setSide(Direction.East, theDoor);
r1.setSide(Direction.South, new Wall());
r1.setSide(Direction.West, new Wall());
r2.setSide(Direction.North, new Wall());
r2.setSide(Direction.East, new Wall());
r2.setSide(Direction.South, new Wall());
r2.setSide(Direction.West, theDoor);
return aMaze;

}
}

35

DRIVER FOR CREATING A MAZE

public class Main {
public static void main(String[] args) {

MazeGame game = new MazeGame();
game.createMaze();

}
}

36

OUTPUT
creating a Maze
creating Room #1
creating Room #2
creating a Door #1 between Room #1 and Room #2
creating Wall #1
setting North side of Room #1 to Wall #1
setting East side of Room #1 to Door #1
creating Wall #2
setting South side of Room #1 to Wall #2
creating Wall #3
setting West side of Room #1 to Wall #3
creating Wall #4
setting North side of Room #2 to Wall #4
creating Wall #5
setting East side of Room #2 to Wall #5
creating Wall #6
setting South side of Room #2 to Wall #6
setting West side of Room #2 to Door #1

37

UML OBJECT DIAGRAM

38

OBSERVATIONS

The code in MazeGame.createMaze() is not very flexible:
▪ the layout of the maze is hard-wired
▪ the types of Rooms, Doors, Walls are hard-coded; there is no

mechanism for adding new components such as
DoorNeedingSpell, EnchantedRoom

Currently, any change to the structure or the components of the maze
requires a complete rewrite of class MazeGame

39

WE CAN USE DESIGN PATTERNS TO MAKE
THE DESIGN MORE FLEXIBLE

▪ replace explicit constructor calls with dynamic dispatch; use overriding
to change kinds of Rooms. → Factory Method

▪ pass object to createMaze() that knows how to create Rooms; create
different kinds of Rooms by passing another object. → Abstract Factory

▪ parameterize createMaze() with prototypical Room object which it copies
and adds to the maze; change the maze composition by passing
different prototype. → Prototype

▪ ensure that there is one maze per game, in a way that all objects have
easy access to it.→ Singleton

40

ABSTRACT FACTORY
▪ provides an interface for creating families of related or dependent

objects without specifying their concrete classes

▪ use AbstractFactory when
▪ a system should be independent of how its products are created,

composed, represented
▪ a system should be configured with one or multiple families of

products
▪ a family of related product objects is designed to be used together

and you need to enforce this constraint
▪ you want to provide a class library of products, and you want to

reveal just their interfaces, not their implementations

41

ABSTRACT FACTORY: PARTICIPANTS
▪ AbstractFactory

▪ declares interface for operations
that create abstract products

▪ ConcreteFactory
▪ implements operations to create

concrete products
▪ AbstractProduct

▪ declares an interface for a type of
product object

▪ ConcreteProduct
▪ defines the product object

created by concrete factory
▪ implements the AbstractProduct

interface
▪ Client

▪ uses only interfaces of
AbstractFactory/AbstractProduct

42

MAZE EXAMPLE REVISITED
▪ create class MazeFactory that creates Mazes, Rooms, Walls, and Doors
▪ then change class MazeGame and Driver to use this factory

class MazeGame {
public Maze createMaze(MazeFactory factory) {

Maze aMaze = factory.makeMaze();
Room r1 = factory.makeRoom();
Room r2 = factory.makeRoom();
Door theDoor = factory.makeDoor(r1, r2);
aMaze.addRoom(r1);
aMaze.addRoom(r2);
r1.setSide(Direction.North, factory.makeWall());
r1.setSide(Direction.East, theDoor);
r1.setSide(Direction.South, factory.makeWall());
r1.setSide(Direction.West, factory.makeWall());
r2.setSide(Direction.North, factory.makeWall());
r2.setSide(Direction.East, factory.makeWall());
r2.setSide(Direction.South, factory.makeWall());
r2.setSide(Direction.West, theDoor);
return aMaze;

}
}

class MazeFactory {
public Maze makeMaze() {

return new Maze();
}
public Wall makeWall() {

return new Wall();
}
public Room makeRoom() {

return new Room();
}
public Door makeDoor(Room r1, Room r2) {

return new Door(r1, r2);
}

}

public class Main {
public static void main(String[] args) {

MazeFactory factory = new MazeFactory();
MazeGame game = new MazeGame();
game.createMaze(factory);

}
} 43

ADDING NEW PRODUCTS IS NOW EASY
class EnchantedRoom extends Room {
 EnchantedRoom(Spell s) {
 super();
 /* ... */
 }

 public String toString() {
 return "enchanted " + super.toString();
 }
}

class DoorNeedingSpell extends Door {
 DoorNeedingSpell(Room r1, Room r2) {
 super(r1, r2);
 /* ... */
 }

 public String toString() {
 return super.toString() +
 " (needing spell)";
 }
}

class EnchantedMazeFactory extends MazeFactory {
 public Room makeRoom() {
 return new EnchantedRoom(castSpell());
 }

 public Door makeDoor(Room r1, Room r2) {
 return new DoorNeedingSpell(r1, r2);
 }

 protected static Spell castSpell() {
 return new Spell();
 }
}

public class Main {
 public static void main(String[] args){
 MazeFactory factory =
 new EnchantedMazeFactory();
 MazeGame game = new MazeGame();
 game.createMaze(factory);
 }
}

44

SOME OBERVATIONS ABOUT THE EXAMPLE

▪ the MazeGame example encodes a somewhat simplified form of the pattern:
▪ MazeFactory is not an abstract class
▪ Room, Wall, Door are not abstract either
▪ EnchantedMazeFactory only overrides some of the methods in

MazeFactory

▪ in general:
▪ downcasting may be needed to access methods/fields in

ConcreteProducts
▪ useful for situations where you create many instances of the same product,

but where you want to be able to vary the product
▪ often used together with the Singleton pattern

45

FACTORY METHOD
▪ define an interface for creating an object, but let subclasses decide which class to

instantiate

▪ Factory Method lets you create objects in a separate operation so that they can be
overridden by subclasses

▪ use Factory Method when:
▪ a class can’t anticipate the class of objects it must create
▪ a class wants its subclasses to specify the objects it creates

46

FACTORY METHOD: PARTICIPANTS
▪ Product
▪ defines the interface of objects

created by the factory method
▪ ConcreteProduct
▪ implements the Product interface

▪ Creator
▪ declares the factory method,

which returns a Product
▪ may define default

implementation that returns a
default ConcreteProduct object

▪ may call factory method to
create a Product

▪ ConcreteCreator
▪ overrides the factory method to

return a ConcreteProduct
47

MAZE EXAMPLE REVISITED
▪ existing Maze example hard-codes Maze, Room, Wall, Door classes

▪ alternative approach:
▪ define factory methods in MazeGame for creating Maze/Room/Wall/

Door objects
▪ update MazeGame.createMaze() to use factory methods

▪ benefit:
▪ allows one to create specialized versions of the game by creating

subclasses of MazeGame
▪ override some or all of MazeGame’s factory methods

48

MAZEGAME USING FACTORY METHODS
class MazeGame {

 public Maze makeMaze(){ return new Maze(); }
 public Room makeRoom(){ return new Room(); }
 public Wall makeWall(){ return new Wall(); }
 public Door makeDoor(Room r1, Room r2){ return new Door(r1, r2); }

 public Maze createMaze(){
 Maze aMaze = makeMaze();
 Room r1 = makeRoom();
 Room r2 = makeRoom();
 Door theDoor = makeDoor(r1,r2);
 aMaze.addRoom(r1); aMaze.addRoom(r2);
 r1.setSide(Direction.North, makeWall());
 r1.setSide(Direction.East, theDoor);
 r1.setSide(Direction.South, makeWall());
 r1.setSide(Direction.West, makeWall());
 r2.setSide(Direction.North, makeWall());
 r2.setSide(Direction.East, makeWall());
 r2.setSide(Direction.South, makeWall());
 r2.setSide(Direction.West, theDoor);
 return aMaze;
 }
}

CREATING SPECIALIZED MAZES
// classes EnchantedRoom and DoorNeedingSpell as before

class EnchantedMazeGame extends MazeGame {
 public Room makeRoom() {
 return new EnchantedRoom(castSpell());
 }

 public Door makeDoor(Room r1, Room r2) {
 return new DoorNeedingSpell(r1, r2);
 }

 private Spell castSpell() {
 return new Spell();
 }
}

// updated driver

public class MainEnchanted {
 public static void main(String[] args) {
 MazeGame game = new EnchantedMazeGame();
 Maze maze = game.createMaze();
 }
}

50

FACTORY METHOD VS. ABSTRACT FACTORY

▪ Abstract factories are often implemented using factory methods
▪ class AbstractFactory contains the FactoryMethods that are overridden in

class ConcreteFactory
▪ factory is passed to Client as a parameter
▪ Client invokes factory methods on this parameter

▪ Note: AbstractFactory can also be implemented using Prototype (the next
pattern we will study)

51

PROTOTYPE
▪ specify the kinds of objects to create using a prototypical instance, and

create new objects by copying this prototype

▪ use Prototype when
▪ a system should be independent of how its products are created/

composed/represented
▪ one of the following conditions holds:
▪ the classes to instantiate are specified at run-time
▪ to avoid building a class hierarchy of factories that parallels the class

hierarchy of products
▪ instances of a class have only a few different combinations of state

52

PROTOTYPE: PARTICIPANTS
▪ Prototype

▪ declares an interface for cloning itself

▪ ConcretePrototype
▪ implements an interface for cloning

itself

▪ Client
▪ creates a new object by asking a

prototype to clone itself

53

PROTOTYPE: BENEFITS

▪ similar to Abstract Factory and Builder:
▪ hide concrete product classes from the client
▪ let client work with application-specific classes without modification

▪ additional benefits
▪ allows for addition of products at run-time
▪ especially important for applications that rely on dynamic

loading to add classes after start of execution
▪ reduced need for subclassing

54

YET ANOTHER VERSION OF “MAZE”

▪ create a new subclass of class MazeFactory called
MazePrototypeFactory
▪ initialized by giving it a prototype Wall, Door, Room, Maze
▪ these prototypes are stored in private fields
▪ whenever a new component is needed, call clone() on the

appropriate prototype

▪ initialize() method need for class Door, to reset the Rooms connected
by the prototype Door

55

PROTOTYPE-BASED ABSTRACT FACTORY
class MazePrototypeFactory extends MazeFactory {

 MazePrototypeFactory(Maze m, Wall w, Room r, Door d) {
 _prototypeMaze = m; _prototypeWall = w;
 _prototypeRoom = r; _prototypeDoor = d;
 }
 public Maze makeMaze() { return (Maze) _prototypeMaze.clone(); }
 public Room makeRoom() { return (Room) _prototypeRoom.clone(); }
 public Wall makeWall() { return (Wall) _prototypeWall.clone(); }
 public Door makeDoor(Room r1, Room r2) {
 Door door = (Door) _prototypeDoor.clone();
 door.initialize(r1, r2);
 return door;
 }

 private Maze _prototypeMaze;
 private Wall _prototypeWall;
 private Room _prototypeRoom;
 private Door _prototypeDoor;
}

ADDING CLONE() METHODS
class Maze {
 …
 public Object clone(){
 // should restrict to empty mazes
 Maze maze = new Maze();
 maze._rooms = _rooms;
 return maze;
 }
 …
}

class Room extends MapSite {
 …
 public Object clone() {
 Room room = new Room();
 room._northSide = _northSide;
 room._southSide = _southSide;
 room._eastSide = _eastSide;
 room._westSide = _westSide;
 return room;
 }
 …
}

class Door extends MapSite {
 …
 public Object clone() {
 Door door = new Door(_room1, _room2);
 return door;
 }

 public void initialize(Room r1, Room r2) {
 _room1 = r1;
 _room2 = r2;
 System.out.println("initializing Door #" +
 _doorNr + " between " + r1 + " and " + r2);
 }
 …
}

class Wall extends MapSite {
 …
 public Object clone() {
 Wall wall = new Wall();
 return wall;
 }
 …
}

UPDATED DRIVER
public class Main {
 public static void main(String[] args){
 MazeGame game = new MazeGame();

 Maze mazeProto = new Maze();
 Wall wallProto = new Wall();
 Room roomProto = new Room();
 Door doorProto = new Door(roomProto,roomProto);

 MazeFactory factory =
 new MazePrototypeFactory(mazeProto, wallProto,
 roomProto, doorProto);

 game.createMaze(factory);
 }
}

58

CREATING SPECIALIZED MAZES
class EnchantedRoom extends Room {
 …
}

class DoorNeedingSpell extends Door {
 …
}

class EnchantedMazeFactory extends MazePrototypeFactory {
 …
 public Room makeRoom(){ return new EnchantedRoom(new Spell()); }
 public Door makeDoor(Room r1, Room r2){ return new DoorNeedingSpell(r1,r2); }
}

public class Main {
 public static void main(String[] args){
 …
 MazeFactory factory =
 new EnchantedMazeFactory(mazeProto, wallProto,
 roomProto, doorProto);

 game.createMaze(factory);
 }
}

SINGLETON

▪ Singleton ensures that:
▪ a class has only one instance
▪ this instance is globally accessible

▪ considerations:
▪ use Singleton for classes that should have only one instance (e.g.,

Scheduler)
▪ lets you avoid parameter-passing of the singleton object

60

SINGLETON: PARTICIPANTS
▪ Singleton

▪ defines an operation that lets
clients access its unique
instance. This operation is static.

▪ may be responsible for creating
its own unique instance

61

EXAMPLE: APPLY SINGLETON TO
MAZEFACTORY (ABSTRACTFACTORY)
class MazeFactory {

 private static MazeFactory _theFactory = null;

 private MazeFactory() { }

 public static MazeFactory instance() {
 if (_theFactory == null) {
 _theFactory = new MazeFactory();
 }
 return _theFactory;
 }
 …
}

public class Main {

public static void main(String[] args) {
MazeFactory factory = MazeFactory.instance();
MazeGame game = new MazeGame();
game.createMaze(factory);

}

}
62

SINGLETON: CONSIDERATIONS
▪ unfortunately, there is no good solution that allows Singletons to be

subclassed
▪ make the constructor protected instead of private
▪ but you cannot override the static instance() method

▪ possible solution:
▪ let instance() method read information from an environment variable

what kind of MazeFactory it should build
▪ requires rewriting the instance() method every time a subclass is added.
▪ in Java, a solution would be to give instance() a String-typed parameter

with the name of the factory, and to use reflection to create an object

▪ other languages have built-in support for singletons
▪ e.g., Scala lets you declare an object

63

CREATIONAL PATTERNS: SUMMARY
▪ creational patterns make designs more flexible and extensible by

instantiating classes in certain stylized ways

▪ AbstractFactory
▪ Builder
▪ FactoryMethod
▪ Prototype
▪ Singleton

▪ next week:
▪ structural design patterns
▪ behavioral design patterns

64

