
FUNCTIONAL TESTINGF. Tip and M.

Weintraub

ACKNOWLEDGEMENTS

2

Thanks go to Andreas Zeller for allowing incorporation of his materials

HOW TO TELL IF A SYSTEM MEETS

EXPECTATIONS?

Two options:

1. testing: execute parts of the program and observe if unexpected

behaviors occur

2. formal verification: exhaustively enumerate all states of the system,

and try to prove that properties to be verified hold in each state.

 Various techniques, e.g. model checking

The First "Computer Bug". Moth found trapped between
points at Relay # 70, Panel F, of the Mark II Aiken Relay
Calculator while it was being tested at Harvard
University, 9 September 1947.

The operators affixed the moth to the computer log, with
the entry: "First actual case of bug being found". They
put out the word that they had "debugged" the machine,
thus introducing the term "debugging a comp...uter
program".

In 1988, the log, with the moth still taped by the entry,
was in the Naval Surface Warfare Center Computer
Museum at Dahlgren, Virginia. The log is now housed at
the Smithsonian Institution’s National Museum of
American History, who have corrected the date from
1945 to 1947. Courtesy of the Naval Surface Warfare
Center, Dahlgren, VA., 1988. NHHC Photograph
Collection, NH 96566-KN (Color).

THE FIRST COMPUTER BUG (1947)

From https://www.facebook.com/navalhistory/photos/a.77106563343.78834.76845133343/10153057920928344/

WHAT TO TEST?

Configurations

DIJKSTRA’S CURSE

Configurations

Testing can only find the presence of errors,

but not their absence

FORMAL VERIFICATION

Configurations

FORMAL VERIFICATION

Configurations

L
e

v
e

l
o

f
 A

b
s
tr

a
c
ti
o

n

FORMAL VERIFICATION

Configurations

L
e

v
e

l
o

f
 A

b
s
tr

a
c
ti
o

n

Design or Specification Level

FORMAL VERIFICATION

Configurations

L
e

v
e

l
o

f
 A

b
s
tr

a
c
ti
o

n

Design or Specification Level

High Level Framework

FORMAL VERIFICATION

Configurations

L
e

v
e

l
o

f
 A

b
s
tr

a
c
ti
o

n

Design or Specification Level

High Level Framework

Code Level

FORMAL VERIFICATION

Configurations

L
e

v
e

l
o

f
 A

b
s
tr

a
c
ti
o

n

Design or Specification Level

High Level Framework

Code Level

Assembly

FORMAL VERIFICATION

Configurations

L
e

v
e

l
o

f
 A

b
s
tr

a
c
ti
o

n

Design or Specification Level

High Level Framework

Code Level

Assembly

OS

Hardware

ZELLER’S COROLLARY

Configurations

L
e

v
e

l
o

f
 A

b
s
tr

a
c
ti
o

n

Design or Specification Level

High Level Framework

Code Level

Assembly

OS

Hardware

Verification can only find the absence of errors,

but never their presence

Configurations

BACK TO TESTING: HOW TO COVER AS MUCH OF

THE SPACE AS POSSIBLE?

L
e

v
e

l
o

f
 A

b
s
tr

a
c
ti
o

n

FUNCTIONAL TESTING – AKA BLACK BOX TESTING

WHITE BOX TESTING IS WHERE YOU TEST BASED

ON KNOWING WHAT’S INSIDE THE MODULE

IF WE CANNOT KNOW THE CODE INSIDE, AGAINST

WHAT DO WE WRITE TESTS?

IF WE CANNOT KNOW THE CODE INSIDE, AGAINST

WHAT DO WE WRITE TESTS?

Specifications

TESTING TACTICS

Tests based on spec

Test covers as much

specified behavior

as possible

Functional/

Black Box

Structural/

White Box

Tests based on code

Test covers as much

implemented behavior

as possible

WHY DO FUNCTIONAL TESTING?

1. Program code not necessary

2. Early functional test design has benefits

1. Reveals spec problems

2. Assesses testability

3. Gives additional explanation of spec

4. May even serve as spec, as in XP

Functional/

Black Box

Structural/

White Box

WHY DO FUNCTIONAL TESTING?

 Best for missing logic defects

 Common problem:
Some program logic was simply
forgotten
Structural testing would not focus on
code that is not there

Functional/

Black Box

Structural/

White Box

 Applies at all granularity levels

 unit tests

 integration tests

 system tests

 regression tests

RANDOM TESTING

Pick possible inputs uniformly

Avoids designer bias

A real problem: The test designer can make the same logical

mistakes and bad assumptions as the program designer (especially if

they are the same person)

But treats all inputs as equally valuable

Angle

Force

INFINITE MONKEY THEOREM

INFINITE MONKEY THEOREM

If you put enough monkeys in front of typewriters and give
them enough time, you eventually will get Shakespeare

Youtube

Angle

Force

232 = 4.294.967.296

different values

232 = 4.294.967.296

different values

18,446,744,073,709,551,616 COMBINATIONS

= 18,446,744,073,709,551,616

THE ALTERNATIVE: COMPUTER SCIENCE

APPROACHES

Computer scientists are smart,

and they can systematically test

and analyze programs.

Functional

specification

Independently

testable feature

Representative

values
Model

Test case

specifications

identify derive

identify

derive

Test case

generate

SYSTEMATIC FUNCTIONAL TESTING

Functional

specification

Independently

testable feature

identify

TESTABLE FEATURES

Decompose system into

independently testable features (ITF)

An ITF need not correspond to units or subsystems of the software

For system testing, ITFs are exposed through user interfaces or APIs

WHAT ARE THE INDEPENDENTLY TESTABLE

FEATURES?

class Roots {

// Solve ax2 + bx + c = 0

public roots(double a, double b, double c)

{ … }

// Result: values for x

double root_one, root_two;

}

EVERY FUNCTION IS AN INDEPENDENTLY

TESTABLE FEATURE

Consider a multi-function

calculator

What are the independently

testable features?

Independently

testable feature

Representative

values
Model

Test case

specifications

identify derive

derive

Test case

generate

REPRESENTATIVE VALUES

Try to select inputs

that are especially

valuable

Usually by choosing

representatives

of equivalence classes that

are apt to fail often

or not at all

LIKE FINDING NEEDLES IN A HAYSTACK

To find bugs systematically, we

need to find out what makes

certain inputs or behaviors

special

Failure (valuable test case)

No failure

SYSTEMATIC PARTITION TESTING
Failures are sparse in

some regions of

possible inputs ...

... but dense in other

If we systematically test some cases

from each part, we will include the

dense parts

Functional testing is one way of

drawing lines to isolate regions with

likely failures

T
h
e
 s

p
a
c
e
 o

f
p
o
s
s
ib

le
 i
n
p
u
t

v
a
lu

e
s

(t
h

e
 h

a
y
s
ta

c
k
)

EQUIVALENCE PARTITIONING

Input condition Equivalence classes

range
one valid, two invalid (larger and

smaller)

specific value
one valid, two invalid (larger and

smaller)

member of a set one valid, one invalid

boolean one valid, one invalid

Defining equivalence classes comes from input conditions

in the spec. Each input condition induces an equivalence

class – valid and invalid inputs.

BOUNDARY ANALYSIS – FINDING ERROR AT THE

EDGES

Test

Possible test case

at lower range (valid and invalid)

at higher range (valid and invalid)

at center

EXAMPLE: ZIP CODE

 Input: 5-digit ZIP code

Output: list of cities

What are representative values

to test?

VALID ZIP CODES

1. With 0 cities as output

(0 is boundary value)

2. With 1 city as output

3. With many cities as output

INVALID ZIP CODES

4. Empty input

5. 1–4 characters

(4 is boundary value)

6. 6 characters

(6 is boundary value)

7. Very long input

8. No digits

9. Non-character data

“SPECIAL” ZIP CODES

1. How about a ZIP code that reads

12345‘; DROP TABLE orders; SELECT * FROM

zipcodes WHERE ‘zip’ = ‘

2. A ZIP code with 65536 characters…

This is security testing

Independently

testable feature

Representative

values
Model

Test case

specifications

identify derive

identify

derive

Use a formal model

that specifies software behavior

Models typically come as

finite state machines and

decision structures

OR, YOU CAN USE MODELS TO DEFINE TESTS

FINITE STATE MACHINE FOR PRODUCT

MAINTENANCE

Requirements Representation

0

1 2
3

4 5 6

7 8

9

COVERAGE CRITERIA

1. Path coverage: Tests cover every path

 Not feasible in practice

Cycles create infinite paths

Acyclic graphs can still have an exponential number of paths

2. State coverage: Every node is executed

A minimum testing criterion

3. Transition coverage: Every edge is executed

Typically, a good coverage criterion to aim for

0

1 2
3

4 5 6

7 8

9

TRANSITION COVERAGE

Each test case covers a set of

transitions

Here, there are five needed to cover

each transition once

one color = one test case

STATE-BASED TESTING

Protocols (e.g., network communication)

GUIs (sequences of interactions)

Objects (methods and states)

DECISION TABLES

 Some specifications define decision tables, decision trees, or flow charts. We can

define tests from these structures.

Type of Purchaser
Educational

Purchaser

Individual

Purchaser

Education account T T F F F F F F

Current purchase >

Threshold 1
– – F F T T – –

Current purchase >

Threshold 2
– – – – F F T T

Special price <

scheduled price
F T F T – – – –

Special price < Tier 1 – – – – F T – –

Special price < Tier 2 – – – – – – F T

Outcome Edu discount
Special

price
No discount

Special

price

Tier 1 d

iscount

Special

price

Tier 2

discoun

t

Special

Price

CONDITION COVERAGE

Basic Criterion: each condition should be evaluated once using each possible setting

“Don’t care” entries (–) can take arbitrary values

Compound Criterion: Evaluate every possible combination of values for the conditions

Decision Coverage: the expression should be evaluated once so it results in each

possible outcome

Modified Condition/Decision Coverage (MC/DC)

Each decision takes every possible outcome

Each condition in a decision takes every possible outcome

Each condition in a decision is shown to independently affect the outcome of the

decision.

used in safety-critical avionics software

details in Pezze + Young, “Software Testing and Analysis”, Chapter 14

LEARNING FROM THE PAST

PARETO’S LAW

Approximately 80% of defects

come from 20% of modules

Functional

specification

Independently

testable feature

Test case

specifications

identify derive

identify

derive

Test case

generate

DERIVING TEST SPEC’S

Representative

values
model

COMBINATORIAL TESTING

Windows

Linux

OracleMySQL

Apache

IIS

OSServer

Database

COMBINATORIAL TESTING

1. Eliminate invalid combinations

 IIS only runs on Windows, for example

2. Cover all pairs of combinations

such as MySQL on Windows and Linux

3. Combinations typically generated automatically

and – hopefully – tested automatically, too

PAIRWISE TESTING MEANS TO COVER EVERY

SINGLE PAIR OF CONFIGURATIONS

Win
dow

s
Linu

x

Orac
le

MyS
QL

Apa
che

IIS Win
dow

s
Linu

x

Orac
le

MyS
QL

Apa
che

IIS

Win
dow

s
Linu

x

Orac
le

MyS
QL

Apa
che

IIS Win
dow

s
Linu

x

Orac
le

MyS
QL

Apa
che

IIS

RUNNING A TEST

A test case…

1. sets up an environment for the test

2. tests the unit

3. tears down the environment again

Tests are organized into suites

TESTING A URL CLASS

http://www.askigor.org/status.php?id=sample

Protocol Host Path Query

http://www.askigor.org/status.php?id=sample

JUNIT EXAMPLE

package junitexample;

public class Calculator {

int add(int value1, int value2) {

return value1 + value2;

}

int subtract(int value1, int value2) {

return value1 - value2;

}

int multiply(int value1, int value2) {

return value1 * value2;

}

int divide(int value1, int value2) {

return value1 / value2;

}

}

JUNIT, PART DEUX

package junitexample;

import junit.framework.TestCase;

public class CalculatorTest extends TestCase {

private Calculator calc;

public CalculatorTest(String s){

super(s);

}

// called before each test

protected void setUp() throws Exception {

super.setUp();

calc = new Calculator();

}

// called after each test

protected void tearDown() throws Exception {

super.tearDown();

}

…

…

// test for the add() method

public final void testAdd() {

assertEquals(calc.add(20, 30), 50);

}

// test for the subtract() method

public final void testSub() {

assertEquals(calc.subtract(20, 10), 10);

}

// test for the multiply() method

public final void testMult() {

assertEquals(calc.multiply(9, 11), 99);

}

// test for the divide() method

public final void testDiv() {

assertEquals(calc.divide(18, 2), 9);

}

}

JUNIT INTEGRATION IN ECLIPSE

writing tests before you implement functionality involves extra
effort, but…

… it forces you to think about the problem you are trying to
solve more concretely
and formulate a solution more quickly

…and you will regain the time spent on unit tests by catching
problems early
and reduce time spent later on debugging

TEST-DRIVEN DEVELOPMENT

RECOMMENDATIONS FOR WRITING GOOD TESTS

write tests that cover a partition of the input space, and that cover
specific features

achieve good code coverage

create an automated, fast running test suite, and use it all the time

have tests that cover your system’s tests at different levels of
functionality

set up your tests so that, when a failure occurs, it pinpoints the issue so
that it does not require much further debugging

EXTRA

Millions of configurations

Testing on dozens of different

machines

All needed to find and

reproduce problems

TESTING ENVIRONMENTS ARE OFTEN COMPLEX

DEFECT SEVERITY

An assessment of a defect’s impact

Can be a major source of contention between dev and test

Critical
Show stopper. The functionality cannot be delivered unless

that defect is cleared. It does not have a workaround.

Major Major flaw in functionality but it still can be released. There is a

workaround; but it is not obvious and is difficult.

Minor Affects minor functionality or non-critical data. There is an easy

workaround.

Trivial Does not affect functionality or data. It does not even need a

workaround. It does not impact productivity or efficiency. It is

merely an inconvenience.

