—— FUNCTIONAL TESTING

Weintraub

Northeastern University
College of Computer and Information Science 440 Huntington Avenue « 202 West Village H « Boston, MA 02115 « T617.373.2462 « ccis.northeastern.edu

ACKNOWLEDGEMENTS

Thanks go to Andreas Zeller for allowing incorporation of his materials

HOW TO TELL IF ASYSTEM MEETS
EXPECTATIONS?

Two options:

1. testing: execute parts of the program and observe if unexpected
behaviors occur

2. formal verification: exhaustively enumerate all states of the system,
and try to prove that properties to be verified hold in each state.

+ Various techniques, e.g. model checking

THE FIRST COMPUTER BUG (1947)

Photo # NH 96566-KN (Color) First Computer “Bug”, 1947
07

/4 : :
0600 Ondkam shaqvic] {/ wo 9037 gyp 0LS

/00 ' ;\q}.} = aaghom / 9.057 ¥YC 795 <ok
13°we (034 HMP ~pe W/,—éﬂ 76/5725055(-9)
e3y Pro » 2. 130y26yss

chJr. 2.130600w3

FIonS -2 =~ 033 .,./ 444//
1709 j’fg_r"‘-— Co ke T S < d\esl
IS Nlavtee ls‘:\ T % QP?"’- (‘rz\t be)

1Say

R&\QA*7° ?q n o_‘ F

Uho‘ﬂ)un FQ\QU\

s ot 5] b by ot

1200 cLadd Jprem

The First "Computer Bug". Moth found trapped between
points at Relay # 70, Panel F, of the Mark Il Aiken Relay
Calculator while it was being tested at Harvard
University, 9 September 1947.

The operators affixed the moth to the computer log, with
the entry: "First actual case of bug being found". They
put out the word that they had "debugged" the machine,
thus introducing the term "debugging a comp...uter
program®.

In 1988, the log, with the moth still taped by the entry,
was in the Naval Surface Warfare Center Computer
Museum at Dahlgren, Virginia. The log is now housed at
the Smithsonian Institution’s National Museum of
American History, who have corrected the date from
1945 to 1947. Courtesy of the Naval Surface Warfare
Center, Dahlgren, VA., 1988. NHHC Photograph
Collection, NH 96566-KN (Color).

From https://www.facebook.com/navalhistory/photos/a.77106563343.78834.76845133343/10153057920928344/

WHAT TO TEST?

e ————————
Configurations

DIJKSTRA’S CURSE

Testing can only find the presence of errors,
but not their absence

e ————————————
Configurations

FORMAL VERIFICATION

—

Configurations

FORMAL VERIFICATION

Configurations

FORMAL VERIFICATION

Design or Specification Level

Configurations

FORMAL VERIFICATION

Configurations

FORMAL VERIFICATION

Configurations

FORMAL VERIFICATION

Configurations

FORMAL VERIFICATION

Configurations

Level of Abstraction

ZELLER’S COROLLARY

Verification can only find the absence of errors,

but never their presence

Configurations

Level of Abstraction

BACK TO TESTING: HOW TO COVER AS MUCH OF
THE SPACE AS POSSIBLE?

Configurations

FUNCTIONAL TESTING — AKA BLACK BOX TESTING

WHITE BOX TESTING IS WHERE YOU TEST BASED
ON KNOWING WHAT’S INSIDE THE MODULE

IF WE CANNOT KNOW THE CODE INSIDE, AGAINST
WHAT DO WE WRITE TESTS?

IF WE CANNOT KNOW THE CODE INSIDE, AGAINST
WHAT DO WE WRITE TESTS?

43 UseCase<UC_XXX_YYY=

LeaCaal w000 Y Unaan acti e D phrace © deacrte e sienars
Doy Dacre 0 0nd & N0 LANICAL T BE0A A Cormre OF T LA Caaa
St rass aoee Thads 3ra Tig0ene P siolas ach iy witin i Suaineas. Thay promge fe

DU AL 0 ACE T a0am0. 2 Tl 10 rBCA DONE SN T Bl irads g
a0 el andy P It weacs v Suena muarle s () A cannicte
SACOMSRAd D VG & MGNe GV AR) A0d CRa A At

Priccary Jexne) Carsy fascne nidadrg T Lsacaae
Sone) Gardy P sacondary acxe
Pre-cordiore Cardy (re<ondiiors 1A mutrte M B P L04 S04 © e dacumd For

A0 T L4 LA SN ATON WA e By i e 0 aceainca e

Faaxordnra Caacrba how T L Ca0e s cmatly compand Dlecits amrrad e vyt
TAC Tl D04 CO0A May WO Rucesa .

Falure Oucarea Falure Cuxome Conciion Bading © L ome
“Taluce s Deacrte Cuacrke fa conditon
iy e e Cate My condiiora under which e
wodras WAL, SUEOMe XL
kel

Fen o' Siwa Ceacrte wharte acr 3048 303 o 1l LY LT RO

THa U04 SO0 0N OF 00 0NE LOVE VRN Tl A0 (e M a0 AN O A
Avaye Naas Loe casm. The Loe Cae Seac e wher P acne doue and
AR 10N S0 N eapore e

chacvad e ararca Daacre £ 140 00 anm Par ahould Socur B e Blure cuxomes

Sotreas Fua Carsy buniraas ruee cagared o refmed © 0 it e caea

Traceainy Aty work (roduc s, MOSeE o SOCUMANE A 1S L84 S04 & Taceate ©,
B A0, SRR L NN, LACELAN] MAQUNAMANE, (OO0 [AE 45

ouUR SU ey erdy dam rguty Pe s

Ouger o mary' Garsty dam cugarty Pasyeam

Specifications

TESTING TACTICS

Functional/
Black Box

+ Tests based on spec

+ Test covers as much
specified behavior
as possible

Structural/
White Box

+ Tests based on code

+ Test covers as much
Implemented behavior
as possible

WHY DO FUNCTIONAL TESTING?

Rl

Structural/
White Box

Functional/
Black Box

1. Program code not necessary

2. Early functional test design has benefits
1. Reveals spec problems
2. Assesses testability
3. Gives additional explanation of spec
4. May even serve as spec, as in XP

WHY DO FUNCTIONAL TESTING?

Functional/ Structural/
Black Box White Box

+ Best for missing logic defects

+ Applies at all granularity levels
+ Common problem:

Some program logic was simply +unittests
forgotten + Iintegration tests
Structural testing would not focus on + system tests

code that is not there + regression tests

RANDOM TESTING

+ Pick possible inputs uniformly
+ Avoids designer bias

A real problem: The test designer can make the same logical
mistakes and bad assumptions as the program designer (especially if
they are the same person)

+ But treats all inputs as equally valuable

BUNK{TE

INFINITE MONKEY THEOREM

“"*\

*‘5;

-*-*;
'§
)

41

INFINITE MONKEY THEOREM

If you put enough monkeys in front of typewriters and give
them enough time, you eventually will get Shakespeare

“‘A

”9!
w
'W

)

- Arig)le

b))% ~ ~
v = = 4 Y4 < Z%)
i)4 43)¢)
S }.997 29
J

18,446,7/44,0/3,709,551,616 COMBINATIONS

total number of trials = 232 x 232 = 264
= 18,446,744,073,709,551,616

THE ALTERNATIVE: COMPUTER SCIENCE
APPROACHES

Computer scientists are smairt,
and they can systematically test
and analyze programs.

SYSTEMATIC FUNCTIONAL TESTING

- Identlfy -

|dentify‘ ‘ derive

’ derlv

- generate -

TESTABLE FEATURES

identify

Functional q
specification

Independently

testable feature

+ Decompose system into
Independently testable features (ITF)

+ An ITF need not correspond to units or subsystems of the software

+ For system testing, ITFs are exposed through user interfaces or APIs

WHAT ARE THE INDEPENDENTLY TESTABLE
FEATURES?

class Roots {
// Solve ax2 + bx + c =0

public roots(double a, double b, double c)
{ ..}

// Result: values for x
double root_one, root_two;

EVERY FUNCTION IS AN INDEPENDENTLY
TESTABLE FEATURE

4+ Consider a multi-function

: 2.518.588.971, 9 calculator

T TG +What are the independently
S testable features?

MTH | PRG ~CST VAR &
B - %

LR DOEF +HUM FICTURE WIEL! SLIAF
STO 3 EVAL - ¥ |
] 0] B]

i : . R

RSN ACOS & ATAM E & 10"
SIN Cos TAN e pX
5 T TR L yob H -

EGUATION EDIT FURG CLEAR: OROF

ENTER +/- EEX _DEL 4

REPRESENTATIVE VALUES

+Try to select inputs
that are especially
valuable

Independently
testable feature

+Usually by choosing

representatives

of equivalence classes that

are apt to fail often Representative
or not at all values

generate

h Test case
specifications

Test case

LIKE FINDING NEEDLES IN A HAYSTACK

To find bugs systematically, we |
need to find out what makes
certain inputs or behaviors
special

SYSTEMATIC PARTITION TESTING

. Failures are sparse In
M Failure (valuable test case) some regions of ... but dense In other

No failure possible inputs ...

(the haystack)

The space of possible input values

If we systematically test some cases
from each part, we will include the
dense parts

Functional testing is one way of
drawing lines to isolate regions with
likely failures

EQUIVALENCE PARTITIONING

Input condition

Equivalence classes

range

one valid, two invalid (larger and
smaller)

specific value

one valid, two invalid (larger and
smaller)

member of a set

one valid, one invalid

boolean

one valid, one invalid

Defining equivalence classes comes from input conditions
In the spec. Each input condition induces an equivalence

class — valid and invalid inputs.

BOUNDARY ANALYSIS — FINDING ERROR AT THE
EDGES

Possible test case

atlowerrange (valid and invalid)

Test at center

at higher range (valid and invalid)

EXAMPLE: ZIP CODE

UNITED STATES
Pd POSTAL SERVICE.

'\ ZIP Code Lookup

Search By Address 2

Search By City »

Find a list of cities that are in a ZIP Code.

* Required Fields
*ZIP Code 12345

Submit >

+ Input: 5-digit ZIP code

+ Output: list of cities

What are representative values
to test?

VALID ZIP CODES

UNITED STATES
Pd POSTAL SERVICE.

'\ ZIP Code Lookup

Search By Address 2

Search By City »

Find a list of cities that are in a ZIP Code.

* Required Fields
*ZIP Code 12345

Submit >

1. With O cities as output
(0 I1s boundary value)

2. With 1 city as output

3. With many cities as output

INVALID ZIP CODES

UNITED STATES
Pd POSTAL SERVICE.

\ ZIP Code Lookup

Search By Address X Search Dy City »

Find a list of cities that are in a ZIP Code.

* Required Fields
*ZIP Code 12345

Submit >

4. Empty input

5. 1-4 characters
(4 1s boundary value)

6. 6 characters
(6 Is boundary value)

/. Very long input
8. No digits

9. Non-character data

“SPECIAL” ZIP CODES

1. How about a ZIP code that reads

12345°; DROP TABLE orders; SELECT * FROM

zipcodes WHERE ‘zip’ =

2. A ZIP code with 65536 characters...

This Is security testing

OR, YOU CAN USE MODELS TO DEFINE TESTS

identify

4+ Use a formal model '

that specifies software behavior
| dentity jf Gl derive
+ Models typically come as

Representative
values

’ derlv

Test case

Independently

testable feature

+finite state machines and

+decision structures

specifications

FINITE STATE MACHINE FOR PRODUCT

MAINTENANCE

Requirements

Maintenance: The Maintenance function records the history of items undergoing
maintenance.

If the product is covered by warranty or maintenance contract, maintenance can
be requested either by calling the maintenance toll free number, or through the
Web site, or by bringing the item to a designated maintenance station.

If the maintenance is requested by phone or Web site and the customer is a US
or EU resident, the item is picked up at the customer site, otherwise, the customer
shall ship the item with an express courier.

If the maintenance contract number provided by the customer is not valid, the
item follows the procedure for items not covered by warranty.

If the product is not covered by warranty or maintenance contract, maintenance
can be requested only by bringing the item to a maintenance station. The mainte-
nance station informs the customer of the estimated costs for repair. Maintenance
starts only when the customer accepts the estimate. If the customer does not ac-
cept the estimate, the product is returned to the customer.

Small problems can be repaired directly at the maintenance station. If the main-
tenance station cannot solve the problem, the product is sent to the maintenance
regional headquarters (if in US or EU) or to the maintenance main headquarters
(otherwise).

If the maintenance regional headquarters cannot solve the problem, the product
is sent to the maintenance main headquarters.

Maintenance is suspended if some components are not available.

Once repaired, the product is returned to the customer.

arrives (¢)

Repairn_w
{main

&qggquarters)

Mamtenance
\
. \g_\ 40
gV ‘eo\oe:oe s\:\; f(/@ '°/70 "es; return
NG O T -
e i §2~ i 'g"re b
(° 550 PR
o el =88 M,
. i or)
Wait for Maintenance 3882
; gy Wait for
returning {no warranty) g8 agl 7
i 8558 pick up
o ,/'71,6 g _B\ § K I
X T 0, %, % E5™
% £9 26, % x
S, g 9 (N 9\0‘5
7
0’9, -
Wait for accept Bepair .
a cceptan - malnt(?nance ‘ repair completed
station) J
o
@®
S 0 o>
component % % &
S arrives (a) %, % N
~
Wait for
component |
arrives (b) c
%
unable to repair '904—0 Q nzx_
(not US or EU resident) KON 2
7 g
component % 9
P K

Repaired J

COVERAGE CRITERIA

1. Path coverage: Tests cover every path

Not feasible in practice

Cycles create infinite paths

Acyclic graphs can still have an exponential number of paths

2. State coverage: Every node is executed
A minimum testing criterion
3. Transition coverage: Every edge is executed

Typically, a good coverage criterion to aim for

TRANSITION COVERAGE

NO
Maintenance

Maintenance
(no warranty) |

Wait for
returning

Each test case covers a set of
transitions

request at

(contract number)

Wait for
| acceptance

Here, there are five needed to cover
each transition once

one color = one test case

N
o\

N

p 8 e

Wait for Repair

component (regional
N ,_P J v headquarters)

arrives (b)
COWR -
arrive y
9 Repair

{main
headquarters)

arr@es (a)

unable\ » repair
(not US or B\ resident)

STATE-BASED TESTING

empty | setup
. opEn e setup Accr e

deposit
linitial)

+ Protocols (e.g., network communication)

+ GUIs (sequences of interactions)

+ Objects (methods and states)

withdrawal
Ifinal)

o=ad nonworking
0 e cloze —

Figure 14.3 5tate cizgram for Account class [adapted from [KIRS4])

DECISION TABLES

+ Some specifications define decision tables, decision trees, or flow charts. We can
define tests from these structures.

R S R h e Educational Individual
P Purchaser Purchaser
Education account T T F F F F F F
Current purchase >
Threshold 1 s F T T
Current purchase >
Threshold 2 - B - B F F T T
Special price <
scheduled price 3 U £ U
Special price < Tier 1 — — — — F T _ _
Special price < Tier 2 — — - — — — F T

. . . .| Tier 2 .
Special No discount Special | Tier 1 d| Special discoun Special

price price | iscount | price ¢ Price

Outcome| Edu discount

CONDITION COVERAGE

+ Basic Criterion: each condition should be evaluated once using each possible setting
+“Don’t care” entries (—) can take arbitrary values

+ Compound Criterion: Evaluate every possible combination of values for the conditions

+ Decision Coverage: the expression should be evaluated once so it results in each
possible outcome

+ Modified Condition/Decision Coverage (MC/DC)
+Each decision takes every possible outcome
+Each condition in a decision takes every possible outcome

+Each condition in a decision is shown to independently affect the outcome of the
decision.

+used in safety-critical avionics software
+details in Pezze + Young, “Software Testing and Analysis”, Chapter 14

LEARNING FROM THE PAST

Mozilla Vulnerabilities
security | mailnews content extensions | nsprpub
I"I_SS base imap base xsit xul canvas3d webservice |python |spelic pr i
ib sre util src src p src temp doc src soap |pro | xpco | || src sre tests
libpkix freebl | softoken [W [+ T xsit [xpath| [src |[src Wl lioatic funle Toch md 1T
pkix_pl_nss |/ mpi ed |11 L H - L — sche e Y S T TuniTma e
I I search 1 cont src E’ oot i
’ H —H e src |2 R - java o= @ o-b HHH
= ax svg events |x xpcom met pre lins typ peas
Sst util lcertd Ismim Hll & compose | import html content src d xforms Sr misc_|pthre T
guss Src src outl |src content [doc | src xtf 1| xmiterm autwis p E@thr cp S i
LA = ns as e src src bl lelli— Fertibase ine coo s o el -
:li:lllfrmf okl (s [de a - eud 0 src can gu=s b e el @
ckfw [l 1 xpcom directory db ef xpinstall
local news lexten
builtins [ca pk1lwr pkes12 mime 22 = io glue c-sdk sqlite3 Compiler |Utilitie wizard
ns pkil [] @j" 24 src EE LIt Idap src Code |Front ||Gener ||| windows [libxpne
certhig grem % bls {1 i libraries LI md LI setup |uni| GUSI
e ”":E mapi b re'ﬁect string |typelib mmE=i il o ? gy -
cmd t old ma xptcal [x |lpu [sr ‘xpi |x| = 052 mac
zlib lib|m |pk si ?r‘l,: ;;:: ce _;_ modules src "::c ts':' Runtim | gc Pa setup unix
oji plugin ds base | tests @s T Syste |isr i —
manager Iss s tests srli tools [sam |llim TR —HEERGH (M C TN (Cll Tools L |
org src test s |s | def HH build |compo . [m
ayout NI L LI o7 || obsolete the lor int editor toolkit xpfe
generic style xul C |ArriA [C “:' < MoreFi % uconv libeditor txm ||components | airbag |[compone |bootstra
| | base Ac pu] ucviat| src |uti jucy html |base place his s ||| airbag || sear boo |app
T] STC widget com || src [——]
1 Wgm:ss png : mcge_jidec AR mac__ 9tk2[: text |tXtsv = appshel
1 A src = =
-] =i =47 |unichar |locale |ctl
~ﬁ% tables mathml [forms Wlibre (libp|libb s waz src |[src llsrc =L parcH S e
libical htmlparser |expa || trace~- codes |re Src
base base d src T1lsrcllsrcll| windows | os2 |beos il
=] = r src B 4 et(] |s src src |p | lib i reld If Ip atk bas|ht |xu
l] src libjar (XM |s Jli —H oh L___Hsrc ms | |
V) svg pro 1 xpwi [qt e ljp
L base re|prin |in ht afx gtk o base protocol e o g
s xlib [colg g http Iftp src C expat_muc boehm“
Is ps xiib | mac [theb [xiib H base protocol ib i€ - H
src tamarin Tneddg crvet -
x'::connect — Iivlet;o core - |-:_ - qt |phot e streamco test o plugin uriloader | camino | ipc
Rl gtk [windo be [xp |sh|| activex | gtk phot E b other-Ticense Suti b s Qoo
| s == HH x11sh src Sfc cache [dns s 7zst |libart M,m MR’ H]H .
ms ——l=k = [l{plu |: I
gho pcre |code MM - o 10 = eb — src & mston |view | mail
cairo thebe || plu pl || POWErP gt : 7zi rdf mac || src |lsrc | |[com
cairo [glitz |[sre webclient ipluggab | browser atk-1. |[base [chro
— = compon| qa tests | [src_moz wf components 5 e profile b“_“ dbm|sun \web
| shell [plle 11 printin /teste | mfc 'w = places |migrat Pegl = d st in Jls [i stu flw
—r| libpixma 2= xpcom |20 _|PU I src] |1 docshell sto |gcon|mini
0| isd CTHH b’;in: publ | ffiwin 1 fi-t5 te T:. " E@ boo's lfi—THHTHPase [lon gt 2
[- | S T ” eb U L] -n "':h rE Src chro
—|

PARETO’S LAW

Approximately 80% of defects

come from 20% of modules

DERIVING TEST SPEC’S

|dent|fy
Functional Independently
specification testable feature

|dentify‘ ’ derive

Representative Notel
values

’ derlv

generate
Test case reeE
specifications

COMBINATORIAL TESTING

Windows

‘I

N
rl',r
A .‘;“ N
.

Xh
AN
V’I"; "

VR WY

x ; H‘«th]‘l,' A
ANK) A
LY

,A’hr/l,

,f
)): (:'. ':',I\ AR
RN Oracle
" ' 'l"v“l] W
‘ ||'l \’ '| | \‘

Database

COMBINATORIAL TESTING

1. Eliminate invalid combinations
+ 1IS only runs on Windows, for example

2. Cover all pairs of combinations
such as MySQL on Windows and Linux

3. Combinations typically generated automatically
and — hopefully — tested automatically, too

PAIRWISE TESTING MEANS TO COVER EVERY
SINGLE PAIR OF CONFIGURATIONS

RUNNING A TEST

A test case...
1. sets up an environment for the test
2. tests the unit

3. tears down the environment again

Tests are organized into suites

TESTING A URL CLASS

http://www.askigor.org/status.php?id=sample

\

Protocol

Host

Path

|

Query

http://www.askigor.org/status.php?id=sample

JUNIT EXAMPLE

package junitexample;

public class Calculator {

iInt add(int valuel, int value2) {
return valuel + valueZ2;

}

int subtract(int valuel, int value2) {
return valuel - valueZ2;

}

iInt multiply(int valuel, int value?2) {
return valuel * value2;

}

Int divide(int valuel, int value2) {
return valuel / valueZ2;

}
}

JUNIT, PART DEUX

package junitexample;
iImport junit.framework.TestCase,

public class CalculatorTest extends TestCase {

private Calculator calc;

public CalculatorTest(String s){
super(s);

}

/[called before each test

protected void setUp() throws Exception {
super.setUp();
calc = new Calculator();

}

// called after each test

protected void tearDown() throws Exception {
super.tearDown();

}

}

/[test for the add() method

public final void testAdd() {
assertEquals(calc.add(20, 30), 50);

}

// test for the subtract() method
public final void testSub() {
assertEquals(calc.subtract(20, 10), 10);

}

// test for the multiply() method
public final void testMult() {
assertEquals(calc.multiply(9, 11), 99);

}

/[test for the divide() method
public final void testDiv() {
assertEquals(calc.divide(18, 2), 9);

}

JUNIT INTEGRATION IN ECLIPSE

® O | Java - JUnitExample/src/jun
il =) e ARl (5)i AS O Qe B G (B e DG e

Packag 5‘6 Junit)~ O motivating-examples.tex paper.tex background.tex code-form

g B @ & v 21 super.tearDown();
> 22 3
Finished after 0.005 seconds 23

24 // test for the add() method
25 public final void testAdd() {

I | assertEquals(calc.add(20, 30), 50);

Runs: HE Errors: B Failures:

v F_;|junitexampIe.CaIcuIatorTest [Rt 27 }
£k testAdd (0.000 s) 28
£l testDiv (0.000 s) 29 // test for the subtract() method
£ testSub (0.000s) 30 public final void testSub() {
£l testMult (0.0005) 31 assertEquals(calc.subtract(20, 10), 10);
32 3
33

34 // test for the multiply() method

35 public final voill testMult() {

36 assertEquals(calc.multiply(9, 11), 99);
37 }

38

39 // test for the divide() method

40 public final void testDiv() {

41 assertEquals(calc.divide(18, 2), 9);
42 }

a = "y

III

— Failure Trace

TEST-DRIVEN DEVELOPMENT

+ writing tests before you implement functionality involves extra
effort, but...

+ ... it forces you to think about the problem you are trying to
solve more concretely

+ and formulate a solution more quickly

+ ...and you will regain the time spent on unit tests by catching
problems early

+ and reduce time spent later on debugging

RECOMMENDATIONS FOR WRITING GOOD TESTS

+ write tests that cover a partition of the input space, and that cover
specific features

+ achieve good code coverage
+ create an automated, fast running test suite, and use it all the time

+ have tests that cover your system’s tests at different levels of
functionality

+ set up your tests so that, when a failure occurs, it pinpoints the issue so
that it does not require much further debugging

EXTRA

TESTING ENVIRONMENTS ARE OFTEN COMPLEX

+Millions of configurations

+Testing on dozens of different } \,, -l R
machines " EIETTEE 1

+All needed to find and " =T
reproduce problems

DEFECT SEVERITY

+ An assessment of a defect’'s impact
+ Can be a major source of contention between dev and test

C t I SHOW STOPPER. The functionality cannot be delivered unless
rtica that defect is cleared. It does not have a workaround.

Ma'or Major flaw in functionality but it still can be released. There is a
J workaround; but it is not obvious and is difficult.

Minoyr Affects minor functionality or non-critical data. There Is an easy
workaround.

Trivial Does not affect functionality or data. It does not even need a
workaround. It does not impact productivity or efficiency. It is
merely an inconvenience.

