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Abstract

Video matting is the process of taking a sequence of
frames, isolating the foreground, and replacing the back-
ground in each frame. We look at existing single-frame mat-
ting techniques and present a method that improves upon
them by adding depth information acquired by a time-of-
flight range scanner. We use the depth information to au-
tomate the process so it can be practically used for video
sequences. In addition, we show that we can improve the
results from natural matting algorithms by adding a depth
channel. The additional depth information allows us to re-
duce the artifacts that arise from ambiguities that occur
when an object is a similar color to its background.

1 Introduction
In video production, it is common to need to remove the

background from a sequence and put a new one in its place.
This process requires what is called an alpha matte, which
defines what percent of each pixel is occupied by the fore-
ground. Typically the alpha matte is computed using a blue
(or green) background for easier segmentation. However,
this technique is not useful in all situations since it requires
a calibrated studio setup with special equipment. Natural
matting methods are a class of algorithms that attempt to
solve the image matting problem without prior knowledge
of the background.

Natural matting algorithms often require a user gener-
ated segmentation to identify background, foreground, and
unknown regions. This segmentation is called a trimap. In
general, trimaps must be drawn by hand, either for each
frame, or at keyframes. This makes the algorithm difficult
to extend to video because manually creating trimaps for
many frames is far too costly when dealing with long se-
quences. Most natural matting algorithms also work only
on the image domain and are therefore susceptible to errors
in places where adjacent sides of a depth discontinuity have
similar colors.

We present two contributions using the additional infor-
mation acquired by a depth camera. First, we remove the
frame-by-frame manual step from the process by automat-

ing the trimap generation. Secondly, we use the depth infor-
mation to disambiguate regions that are prone to error us-
ing standard natural matting. We demonstrate our method
by augmenting two commonly used natural matting tech-
niques, Bayesian matting [5] and Poisson Matting [13], to
include the depth information. Figure 1 shows the overall
approach. These improvements could be applied to other
natural matting algorithms as well.

2 Related Work
There has been a large body of research concerning

video and photo matting in general. Smith and Blinn an-
alyzed a commonly used technique, constant color matting,
using a blue screen [12] . Several single frame natural mat-
ting algorithms [10][11][6][5][13] were developed to work
with a more wide range of backgrounds. However, one
problem with all of these techniques is that they are not
optimal when dealing with video, as they require trimaps.
In addition, while these algorithms are capable of produc-
ing high quality results, there is an inherent ambiguity with
regions across depth boundaries with similar colors. Flash
matting expands upon Bayesian matting by collecting two
images, one with a flash on and one with a flash off [14].
This extra information helps improve the quality of the re-
sults, and reduces the likelihood of same color ambiguities.

There have been several groups that have presented so-
lutions to video matting. Chuang et al. showed that opti-
cal flow could be used to interpolate hand drawn trimaps
across time, which reduces the amount of manual input re-
quired [4]. Multiple cameras were also used to bypass the
manual input trimap problem [9] [8]. These methods are
able to generate trimaps automatically, but because they are
dependent on specific apertures and blurring, they can be
thrown off by scenes with inadequate light, motion blur,
or lack of texture information. A Bayesian matting mod-
ification has been made using spatiotemporal information
to create video mattes [2]. However, it assumes a moving
foreground object, which is not always the case. Zitnick et
al. [16] uses image segmentation-based stereo to construct
a depth map, which is used to separate the foreground from
background, but do not compute partial alpha values.

There have been other hardware solutions that use depth



Figure 1. An overview of our algorithm showing the input color and depth images, matting without depth, and our solution
incorporating depth.

Figure 2. Creating a trimap. Left: The original image,
Middle: Depth map, Right: Automatically generated trimap

information for matting purposes. 3DV Systems [1] de-
veloped a depth and image camera combination called the
ZCam [7] which is able to perform foreground/background
segmentation, but uses a simpler alpha value computation.
Our work is similar to the ZCam in that we both use time-
of-flight sensors to acquire depth data.

3 Method
In order to perform our matting, we first create a trimap

from the depth image. The trimap is used as input to our
modified matting methods to generate an alpha matte. The
second step is to modify Bayesian and Poisson matting to
use the depth information.

3.1 Automatic Trimap Generation
We use our depth information to automatically generate

an accurate trimap. This is done in 3 steps: upsampling,
thresholding, and dilating.

For each frame we have a high resolution picture taken
with a digital camera and a low resolution depth map taken
with the depth camera. The depth information that we used
for our dataset was collected using the CanestaVision [3]
depth camera. This camera computes a 64x64 resolution
depth image. We use a super resolution method presented
by Yang et al. [15] to generate high resolution depth images.
This method is able to upsample the depth map up to 100
times the original resolution with little visible error.

We then compute a background-foreground segmenta-
tion using the depth information. We require that the user
define a dividing plane that separates objects that lie in the
foreground and objects that lie in the background. This step
can not be automatic because it is a user’s decision as to

Figure 3. Left: Standard Bayesian matting. Right: Our
improved Bayesian matting, showing the removal of unde-
sirable artifacts.

what is considered background for a given scene. We then
compute a threshold on the distance plane over a video se-
quence.

The two-color image is the beginning of our trimap. We
need to first determine the unknown region around an ob-
ject. To do this we erode and then dilate the foreground.
The exact amount of erosion and dilation is specified by the
user and is dependent on the ”fuzziness” of the object in the
foreground. We now have a trimap that we can use to com-
pute the alpha matte for each frame of video. This step is
shown in Figure 2.

3.2 Improving Natural Matting
Natural matting algorithms generally work by estimat-

ing the unknown background, unknown foreground and un-
known alpha value. Different algorithms use different meth-
ods to approximate these parameters. We perform our tests
on two separate algorithms: Bayesian and Poisson matting.
However, our method could be added to any natural matting
method that operates on RGB images.

Natural matting techniques operate on the RGB image



domain and therefore do not always produce desirable re-
sults when there are similar colors in the foreground and
background, which can cause large false positive regions
outside the object and false negative regions inside the ob-
ject. By using the depth information in the error minimiza-
tion step, we are able to prevent this bleeding.

Bayesian Matting Bayesian matting maximizes a joint prob-
ability expressed using Bayes Rule as follows:

arg max
F,B,α

P (F,B, α|C) = (1)

arg max
F,B,α

L(C|F,B, α) + L(F ) + L(B) + L(α)

The term L(C|F,B, α) is the log probability of the ob-
served pixel value C given a predicted foreground F , back-
ground B, and α. L(F ) and L(B) are the log probabilities
of colors F and B being the foreground and background re-
spectively. L(α) is the log probability of α, which for our
implementation is assumed to be constant. The algorithm
works its way from the outside in until the whole unknown
area is filled.

Our depth information gives us strong evidence for
whether the object is foreground or background in regions
with strong depth edges. However, this information is in-
accurate when the object is semitransparent (has an alpha
value that is not 0 or 1). We therefore weigh our confidence
in the depth channel based on the estimated alpha value,
such that the weight is high when the alpha value tells us
that we are seeing mostly background or mostly foreground.
We include the weighted depth information as a fourth color
channel into the Bayesian matting and perform the same
minimization as presented by Chuang et al.[5]. This step is
shown in Figure 3.

Poisson Matting Using depth information in the Poisson
matting approach is different from the Bayesian approach.
Poisson matting converts color images into a single-channel
image. Simply treating the depth map as an additional chan-
nel leads to a poor alpha matte with an appearance similar
to the depth map, since the binary depth map heavily influ-
ences the gradient field. To integrate the depth map into the
Poisson matting approach, a confidence map is produced
that is based upon the consistency of the three channels of
the matte generated by the global Poisson matting approach:

αmin = min(α(0), α(1), α(2));
αmax = max(α(0), α(1), α(2));

F1 =
2∏

d=0

exp(− (α(d) − αmin)2

2σ2
);

F2 =
2∏

d=0

exp(− (α(d) − αmax)2

2σ2
);

F = min(F1, F2), (2)

(a) Color image. (b) Confidence map.

(c) Alpha matte. (d) Local alpha matte.

Figure 4. Improved Poisson matting. A confidence map
is produced by measuring the consistency of the RGB chan-
nels of the alpha matte generated from the global Poisson
matting approach. The confidence map is then used as guid-
ance for the combination of the binary depth map and the
alpha matte. Note that we show the independent matte for
each color channel for illustration purpose.

where αmin/αmax is the minimum/maximum of the matte,
and F is the confidence map. The final alpha matte is the
linear combination of the matte generated from the Poisson
matting approach and the depth map based on the confi-
dence map F :

α′ = Fα + (1 − F )D, (3)

where D is the binary depth map. Figure 4 provides a visual
comparison of the alpha matte with and without integrating
depth information.

Poisson matting assumes that the gradient change in
the unknown regions within the trimap is caused by fore-
ground/background transitions only. This assumption is vi-
olated when there are textures in the foreground or back-
ground. The depth map is independent of textures and there-
fore provides a better estimation of the boundary in this
case.

4 Experimental Results
We tested our approaches using several real sequences

we captured. Our experimental setup uses two cameras: one
for depth and one for color. We register these two images
via an affine transformation. Given the low resolution from
the depth sensor, we found that this simple method provides
a good enough registration between the two cameras.

Our automatically generated trimaps worked well with
both of our modified natural matting algorithms, greatly re-
ducing the amount of noise when compared to the original



Figure 5. Video matting using improved Bayesian matting. Left: The original scene. Right: Background replaced.

Figure 6. Video matting using improved Poisson matting. Left: The original scene. Right: Background replaced.

methods without using depth information. Figure 5 shows
the output on several frames of a scene using Bayesian mat-
ting and Figure 6 shows the results from Poisson matting.
The full sequences can be seen in our video. The slowdown
from incorporating the depth channel into the matting algo-
rithm was negligible.

5 Limitations and Future Work
One shortcoming of this research is that we require a di-

viding plane to segment the foreground and the background,
this assumption is not always true. One common example
of this would be feet and a floor that is visible to the cam-
era. Since the floor’s depth spans from in front of the foot
to behind it, a single depth cut will divide the floor into two
segments which may not be desirable. However, our ap-
proach represents a new way of dealing with video matting.
With a depth camera we were able to speed up video pro-
cessing dramatically by removing the manual step, making
natural matting approaches more accessible for video. We
also proposed an improvement in accuracy by including the
use of a depth camera. It would be simple to incorporate
this system into a single camera that captures both depth
and color from the same viewpoint.
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