Shading and Lighting

CS 4300/5310

also today: GDC Vault advanced lighting C ter G hi
omputer Graphics

ANNOUNCEMENTS

Upcoming Deadlines

HW3: Particle Systems
March 2nd

QUICK REVIEW

Review: The Graphics Pipeline

[3D Primitives]

Modeling Transformation What happens in each of these stages?
Lighting
Viewing Transformation
Clipping
Projection to 2D space

Rasterization

Pixel Shading

[Frame Buffer]

Review: Lighting

What kinds of lights are there?

Why do we use each one?

Lighting & Shading

[3D Primitives] Shadlng

Modeling Transformation Vertex ||ght|ng
L Lighting J Color interpolation
Texturing
Viewing Transformation
Clipping

Projection to 2D space Eﬁ:ects
Rasterization Bump mappmg
Pixel Shading / Displacement mapping

Shadow mapping

Frame Buffer

part one

LIGHTING & SHADING

Kinds of Lights

Ambient

Point

Directional

Spot

Calculating Color Per Vertex

How can we do this?

Calculating Color Per Vertex

How can we do this?

The same way we calculate color for the
raytracer!

Ambient Light

There is usually only one ambient light in a
scene

color=M,I,

Lambertian Shading

Diffuse shading: matte color

Assume material reflects light evenly in all

directions :
C

color = M,l, + Z M (NeL)I,

Blinn-Phong Shading

Specular light: idealized reflection

Depends on how much is seen by viewer

5
;‘ I

color = M,l,+ % (My(NeL)Il, + M (VeR)"I)

But what about the pixels?

We know the color at every vertex of an
object

What are our options for the pixels?

Flat Shading

Pre-Rasterization

transform position and normal (object to eye
space)

compute shaded color per triangle using
normal

transform position (eye to screen space)

Rasterizer

interpolated parameters: z’ (screen z)
pass through color

Fragment stage

write to color planes only if interpolated z’ <
current z

Gouraud Shading

Pre-Rasterization

transform position and normal (object to eye
space)

compute shaded color per vertex
transform position (eye to screen space)

Rasterizer

Interpolated parameters: z’ (screen z)
Interpolated r, g, b color

Fragment stage

write to color planes only if interpolated z’ <
current z

Phong Shading (Per-Pixel Shading)

Pre-Rasterization
transform position and normal (object to eye
space)
transform position (eye to screen space)
Pass through color

Rasterizer
Interpolated parameters: z’ (screen z)
Interpolated r, g, b and surface normal (x, v, z)

Fragment stage

Compute shading using interpolated color &
normals

write to color planes only if interpolated z’ <
current z
Lighting color is computed per pixel rather than per vertex

Raytracing vs. Rasterization

Shading is very similar between these two
approaches to rendering

What’s missing so far?

Why is rasterization considered faster?

What effects from the real world can we not
capture with this model?

What special effects (artistic effects) can we
not capture?

ADVANCED LIGHTING

