

also today: paper discussion

CS 4300/5310 Computer Graphics

#### **ANNOUNCEMENTS**

#### **Deadlines**

- 2D Project Proposal: today!
  - Submit one per group

2D Project main deadline:
 February 5<sup>th</sup>



#### **Project Scoping Workshop: Thursday**

 Each group brings hardcopy of project proposal to class

Bring laptops if possible

#### **Global Game Jam!**



Go to www.northeastern.edu/games/ggj and register now!

#### **IMAGE PROCESSING**

#### **Working with Images**

- Image Understanding
  - input: image; output: high level understanding

- Image Analysis
  - input: image; output: features

- Image Processing
  - input: image; output: image

# **Image Understanding**



# **Image Analysis**



#### **Image Analysis**



http://www.sciencedaily.com/releases/2012/09/120926094546.htm



















Image transformations and warping

- Image filtering
  - Spatial domain
  - Frequency domain

# Review: What is an Image?



#### A Sample from a Continuous Function



### A Sample from a Continuous Function



#### **IMAGE WARPING**

# Mapping

# Mapping

V



,

$$x,y = f(u,v)$$



u

# Mapping

V



У





u

### **Example Mappings**

- Rotate
  - $x = u \cos(\theta) v \sin(\theta)$
  - $y = u \sin(\theta) + v \cos(\theta)$
- Scale
  - $x = s_x u$
  - $y = s_v V$
- Shear (by X)
  - $x = u + s_x v$
  - y = v

# **Example Mappings**







#### **Forward Mapping**



#### **Forward Mapping**



#### Forward Mapping: Why You Shouldn't Do It



#### Forward Mapping: Why You Shouldn't Do It



One destination pixel with two source pixels!

#### Forward Mapping: Why You Shouldn't Do It



One destination pixel with zero source pixels!

#### **Inverse Mapping**

for x in range dest\_width:  
for y in range dest\_height:  

$$u, v = f^{-1}(x, y)$$
  
 $dest(x, y) = src(u, v)$ 



#### **Inverse Mapping**

for x in range dest\_width:

$$u, v = f^{-1}(x, y)$$

$$dest(x, y) = src(u, v)$$

**???** 



### Inverse Mapping



#### Resampling



## **Point Sampling**



$$u = int(u' + 0.5)$$

$$v = int(v' + 0.5)$$

#### **Triangle Filtering**

Find the four closest pixels in src image  $a = \text{interpolated color between } (u_1, v_2) \text{ and } (u_2, v_2)$   $b = \text{interpolated color between } (u_1, v_1) \text{ and } (u_2, v_1)$ dest(x,y) = interpolated color between a and b



#### **IMAGE FILTERING**

#### Filtering

- Accentuate particular image features
  - Edge detection
  - Sharpening
- Remove sampling artifacts
  - Antialiasing
- Effects
  - Motion blur

#### **Discrete Convolution**

Filter is an n x n matrix

- Pass filter across input image
  - Align center of filter with each pixel
- New pixel value: weighted average of old pixel values





http://beej.us/blog/data/convolutionimage-processing/

#### **Kinds of Aliasing**

- Intensity
  - Not enough colors

- Spatial
  - Not enough image resolution

- Temporal
  - Not enough samples of moving image

#### Thinking about Frequencies



- A line drawn on a piece of paper is like a step function
  - 0: nothing is drawn
  - 1: full intensity
- Frequency of sampling?

### **Thinking about Frequencies**



# **Anti-aliasing**



#### But isn't matrix convolution really slow?

- Not in the frequency domain!
  - Matrix convolution in spatial domain = multiplication in the frequency domain
  - Fast fourier transform (and inverse) takes you between the two representations

#### source:

http://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ ImageProcessing-html/fourier.html





#### **PAPER DISCUSSION**