Northeastern University
COMP5200 — Database Management Systems
Fall 2017, Derbinsky

Create a Database from Scratch

The focus of this activity is to have you practice schema creation (CREATE), data manipulation (INSERT,
UPDATE, DELETE), and predict the output of a query (SELECT). It is written for MariaDB (via phpMyAd-
min), but with slight modification you can also use SQLite. This activity is not graded, and there is
nothing to turn in; however, you will find the skills useful for your project and the content is fair game
for exams.

First, open phpMyAdmin and click the “SQL” tab'. We will first create a new database, named “simple”:
CREATE DATABASE simple;

You should now see a database named “simple” in the listing of databases on the left side of the page
— click it. When you click one of these links, you are telling phpMyAdmin to “use” a database as the
context for future SQL commands. To switch between databases in SQL, issue the USE command:

USE Chinook;
USE simple;

We are now going to generate the following database schema and state:

alpha beta
a b c d e
X 1 X i 3.14
y 2 v i 2.7
z 3

To begin, let’s create the tables:

CREATE TABLE alpha

(
a VARCHAR (10) PRIMARY KEY,
b INT
)
CREATE TABLE beta
(
¢ VARCHAR(10),
d VARCHAR (10),
e REAL,
PRIMARY KEY (c,d)
)

Tn this lab we will do as much as possible via SQL. Feel free to use the equivalent GUI features in your own work.

COMP5200, Fall 2017, Derbinsky — Create a Database from Scratch 2

You should now see these tables beneath “simple” on the left (you might have to refresh). You can click
them, and click the “Structure” tab to verify the fields — look to the “Indexes” section to verify the
primary key (also visible via the key icon next to the “a” field).

php -
DOTIHC] Browse 4 Structure] SQL 4 Search 3¢ Insert =} Export [id Import = Privileges J° Operations ® Tracking 3% Triggers
Recent Favorites
B e M Table structure 2 Relation view
4 New
r Chinook # Name Type Collation Attributes Null Default Extra Action
i 1 a.> varchar(10) latin1_swedish_ci No None Change @ Drop > Primary [Unique (=] Index % Spatial (] Fulltext [] Distinct values ¥ More
4 information_schema 10 ¢ ge @ Drop y (4 Unique (] Index % Spatial (1] 3 -
'Y mysql 2 b int(11) Yes NULL ' Change @ Drop . Primary |yl Unique .| Index [Spatial 7| Fulltext | | Distinct values w More
i
+_ | performance_schema
4. phpmyadmin 1 ~) Checkall With selected: | ~|Browse 7 Change (@ Drop ’ Primary ul Unique “|index fAdd to central columns % Remove from central columns
I :
= s'"‘:"e (&) Printview B Propose table structure @ ® Tracktable 5 Move columns 4 Improve table structure
) New
(54 apha 3 Add |1 ¢ | column(s) | afterb -] (6o
8 84 beta - Indexes
FL test
Indexes &
Action Keyname Type Unique Packed Column Cardinality Collation Null Comment
.7 Edit @ Drop PRIMARY BTREE Yes No a [A No

Now to populate the tables! In MySQL, you can do so via individual statements that add one row at a
time, such as ...

INSERT INTO alpha (a, b) VALUES ('x', 1);
INSERT INTO beta (c, d, e) VALUES ('x', 'i', 3.14);

or you can group all inserts [per table] into a single statement:

INSERT INTO alpha (a, b) VALUES ('x', 1), ('y', 2), ('z
INSERT INTO beta (c, d, e) VALUES ('x', 'i', 3.14), ('y', 'ii', 2.7);

If you make a mistake, simply issue an update:

UPDATE alpha SET b=2 WHERE a='y';

or delete superfluous rows:

DELETE FROM beta WHERE c¢ NOT IN ('x', 'y');

Exercise

For each of the following queries, predict what exactly the output will be (column names & order, row
contents):

SELECT * FROM alpha INNER JOIN beta;

SELECT * FROM alpha INNER JOIN beta ON alpha.a=beta.c;

SELECT * FROM alpha LEFT JOIN beta ON alpha.a=beta.c;

SELECT * FROM beta LEFT JOIN alpha ON alpha.a=beta.c;

SELECT * FROM alpha LEFT JOIN beta ON alpha.a=beta.c WHERE alpha.b>=2;

SELECT AVG(alpha.b) AS avg_b FROM alpha LEFT JOIN beta ON alpha.a=beta.c
WHERE beta.d IN ('i', 'ii', 'iii') OR beta.c IS NULL;

Before continuing with the lab, verify your predictions by executing each query. Make sure you under-

stand each result before moving on.

Now delete (x, i, 3.14) in beta and add a new row with (w, -, 1.732) and repeat this exercise,
predicting and verifying each query above.

COMP5200, Fall 2017, Derbinsky — Create a Database from Scratch 3

Let’s now try to cause trouble! First, try to add a row that violates the primary key constraint:
INSERT INTO alpha (a, b) VALUES ('x', 7);

Notice the error that is raised — make sure you understand this w.r.t. (with respect to) the definition of
a primary key.

Let’s try another mistake:

ALTER TABLE beta
ADD CONSTRAINT c_fk
FOREIGN KEY(c)
REFERENCES alpha(a);

You should notice that there is an offending row — delete this row and retry the ALTER command.

Now, let’s try to make a mistake in the opposite direction:
DELETE FROM alpha WHERE a='y';

You should be able to describe why this error occurs, as well as a method to alter the schema of alpha
to allow the deletion to take place.

At this point we have the following schema & state:

alpha beta
v I
a c d e
y ii 2.7

x
W IIN |- |T

COMP5200, Fall 2017, Derbinsky — Create a Database from Scratch 4

For practice, let’s start from scratch, create the schema in one fell swoop, and add all the data. First,
get rid of the tables:

DROP TABLE alpha;
DROP TABLE beta;

Oops, that didn’t work — why not? Try this instead:

DROP TABLE beta;
DROP TABLE alpha;

Can you think of another way you could have achieved this outcome?

Now create our enhanced schema:

CREATE TABLE alpha

(
a VARCHAR (10) PRIMARY KEY,
b INT

)

CREATE TABLE beta
(

¢ VARCHAR (10),

d VARCHAR(10),

e REAL,

PRIMARY KEY (c,d),

CONSTRAINT c_fk FOREIGN KEY (c) REFERENCES alpha(a)
)

And populate the rows:

INSERT INTO alpha (a, b) VALUES ('x', 1), ('y', 2), ('z', 3);
INSERT INTO beta (c, d, e) VALUES ('y', 'ii', 2.7);

Congratulations — you have completed this activity. Finally, let’s clean up by deleting the database:
DROP DATABASE simple;

