Final Review

Lecture 17

December 5, 2017 1

Outline

1. Final Exam

2. What We Did Not Cover

Format

- 5 problems, with multiple sub-parts
 - Up to 2 hours (then break, solutions)

 No notes, calculators, books, computers, phones, etc. may be used

Content (1)

Database Design

a) Given a narrative, design a database (i.e. words -> logical design)

2. Normalization

a) Evaluate a db design in the context of FDs; justify and implement decomposition to 3NF

3. SQL

- a) Given db state + SQL, predict output
- b) Given schema + text, produce SQL

Content (2)

4. Physical Design

- a) Given a query (load) and contextual information (e.g. db structure, selectivity, frequency), diagnose performance and recommend an appropriate intervention
- Maybe more than once :) b)

5. TCRS

- a) Concurrent transactions: characterize, conflictequivalent serial schedules
- b) Log -> disk/db state (after failure/recovery), checkpointing
- c) SQL Injection: meaning, prevention
- Secure password storage

The Landscape of Databases

- Using an RDBMS
- Conceptual/Logical design
- Physical design
- How an RDBMS works
- Non-Relational models
- Scaling
- Data analytics

Using an RDBMS

- DBMS diversity
 - DB2, Oracle, SQL Server
- Advanced database programming
 - Views
 - Stored procedures, triggers
 - Cursors, ORM
 - Data formats: CSV, XML, JSON
 - [Web] APIs
- Reporting
 - Analytics

Conceptual/Logical Design

- ERDs
 - Multi-way relationships
 - Other dialects
 - UML

- Normal forms
 - BCNF, 4NF, 5NF, 6NF

Physical Design

- Storage, details of ...
 - Cost models
 - File organization
 - Buffering

- Indexing, details of ...
 - Hashing
 - Trees
 - Specialized

How an RDBMS Works

- Query evaluation/optimization
 - Join processing, sorting
- Distributed databases

Non-Relational Models

- XML, Object-Relational
- Spatial
- Time series
- Probabilistic

Scaling

- Distributed Databases
 - OLAP
- Cloud computing
 - MapReduce
- Crowdsourcing
 - Mechanical Turk
 - Human computation (e.g. reCAPTCHA, Duolingo)
- Security
 - Differential privacy
 - Regulation (e.g. HIPAA), provenance

Final Review

Data Analytics

- Data Mining/Science
- Ranking (e.g. PageRank)
- **Data Warehouses**
 - Data cube
- Natural Language Processing (NLP)
 - Entity matching
- Human-Computer Interaction (HCI)
 - Visualization
 - [Facilitated] exploration
 - Explainable queries

Summary

- You have learned the basic flow of designing a database (for correctness, performance, and security), using an existing database, and developing a database-enabled application – well done!
 - Best of luck on the final exam :)
- If you are interested in topics we did not cover, consider taking a relevant class (e.g. Data Science, Machine Learning, Web Development, **DB** Seminar)
 - Always feel free to come by my office and chat/work on a cool project:)

