Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Security
[help from XKCD, Christo Wilson]

Lecture 16

Wl Security

November 27, 2017 1

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Outline

 (Context

* Access Control
— Strong password policies, 2FA
— Discretionary, Mandatory
— Least Privilege, Separate Privileges
« Attacks
— SQL Injection
— DoS (limit password length!)
— Brute force password attempts (iCloud)
— Internal vs. External (80% internal via Oracle)
— Separate server, updates, audit logs
» Inference Control
* Encryption
— Symmetric, Asymmetric, Hashing — tricky to get right!
— Whole Database (and backups!), Communication
— Sensitive Data, Password Storage

November 27, 2017 2

Northeastern University

CS5200 - Database Management Systems -+ Fall2017 - Derbinsky

Database Design and Implementation Process

Figure 10.1
Phases of database design and Data content, structure, Database
implementation for large databases. and constraints applications
Phase 1: Requirements Data Processing
collection requirements requirements

and analysis l l

Phase 2: Conceptual Conceptual Transaction and
database —> Schema design application design
design (DBMS-independent) (DBMS-independent)

Phase 3: Choice
of DBMS

Logical Schema Frequencies,

Phase 4: Data model

Security

mapping ™ and view design performance
(logical design) (DBMS-dependent) constraints
‘ /
Phase 5: Physical Internal /
design Schema design
(DBMS-dependent)
‘ y
Phase 6: System DDL statements Transaction
implementation SDL statements and application
and tuning implementation

November 27, 2017

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Guidelines

» Security as first-class citizen
— Early on security was an add-on, now it is everything

« Security via depth
— Don’t assume a firewall will save you

» Design for failure
— What happens after a breach occurs?

* Secure the weakest link
— Anything but the crypto!

* Obscurity is not security
— Keys in binary stand out like sore thumbs
— Stored procedures are not a cure for access control

Security

November 27, 2017 4

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Access Control

* Authentication: who are you

— Typically username + secret
« Something you know (password)
« Something you have (smart card/phone)
« Something you are (fingerprint, iris)

* Authorization: what can you do

(-3 Security

A

November 27, 2017 5

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

XKCD: Authorization

F SOMEONE. STEALS MY LAPTOP WHILE I'M
LOGGED IN, THEY CAN READ MY EMAIL, TAKE MY
MONEY, AND [MPERSONATE. ME TO MY FRENDS,

BUT AT LEAST THEY CANT INSTALL
DRIVERS WITHOUT MY PERMISSION.

November 27, 2017 6

- Derbinsky

CS5200 - Database Management Systems - Fall 2017

Northeastern University

XCKD: License Plate

- SOON:
CHECK OUT VY | NOONE \WILL BE ABLE.

THE THIEFS LICENSE PLATE
PERSONALIZED | TO CORRECTLY RECORD | oc o "' 3o GOMETHING

UCENSE PLATE! | MY PLATE NUMEGER!
”III‘III 1\\? \ m. Mr G)Y
-) T CAN CIRAT ANV HIS ADDRESS 15
T PERFECT! CRME L LANT) ONAPOSFT N
,) S00NDS I THE SQUAD AR
K FOOLPROOF |

)

o=

Security

November 27, 2017

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Authentication Policies

« Passwords

— Enforce minimum length/complexity
» Also maximum (more later w.r.t. DoS)

— Require updates

— Goal: make guessing/cracking difficult
« Cross-service

« Attempts
— Enforce limits to avoid brute force (iCloud)

« 2 Factor Authentication (2FA)

— Often infeasible

— Implementation may weaken
* e.g. Social engineering

@) Security

November 27, 2017 8

Northeastern University

CS5200 - Database Management Systems

Fall 2017

Derbinsky

XKCD: Password Strength

u;_m;;UNé]oﬁM[li Julu] - ~ 28 BITS OF ENTROPY WAS IT TROMBONE? NO,
O ORDER Qoooonnl TROUBADOR. AND ONE OF
(Ngsg'ﬁggp‘sﬁ) UNKNO\.JN oo o || ™E Os Was A zero?
AL ‘ 111 \ \
e *2“ oay ’A AND THERE WAS
=3 S AT OME SYMROL...
Tr@u b4d or &3 1000 GUESEES sec
J (seus oo perere
CAPS? Mm HIN:SN 5 Fﬂsmf‘ll NOT WHAT THE
0 SUBsr:TUToNs NM?RA L[[o oot i)
PUNCTUATION DIFRCOLTY T0 GUESS: DIFFICOLTY TO REMEMBER:
(\mow ncmuurgm @r:f.s ™ e EAW H ARD
15 onuous A FEW COMMON FORMATS)
~ 44 BITS OF ENTROPY
ooaooopOonooa
correct horse battery s’caple S—
. L—-r*JL—‘) - J U LU
u;.'ﬂ] 100n :L_j"‘if:_x .,7%451 poOngooaoaoo
ogao I",,'T,,_v ooagag 1000
C ﬂ\ | | / 2"=5%0 YEP}RS AT
1000 GUESSES/SEC
FOUR RANDOM
COMMON WORDS DIFFCOLTY T0 GUESS: DIFFICOLTY TO REMEMBER:
YOU'VE ALREADY
HARD MEMORIZED IT

THROUGH 20 YEARS ¢ EFFORT, WEVE SUCCESSFULLY TRAINED

EVERYONE TO USE' PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Security
November 27, 2017 9

Northeastern University

Random Passwords

200

CS5200 - Database Management Systems

175 26+26+10 Characters

125
100
75
50
25

==) 6 Characters

Strength (Bits)

Security

November 27, 2017

150 ==26+26 Characters

10

15 20

Password Length (Characters)

25

30

Fall 2017

35

Derbinsky

Very
Strong

Very
Weak

10

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

But Passwords Are Not Random

Top 25 most common passwords by year according to SplashData

Rank | 20111 | 20120 2013061 2014071 201508 20160

1 password | password | 123456 123456 123456 123456

2 123456 123456 password password | password password
3 12345678 | 12345678 | 12345678 12345 12345678 12345

4 | qwerty abc123 qwerty 12345678 | qwerty 12345678
5 |abcl123 qwerty abc123 qwerty 12345 football

6 monkey monkey 123456789 | 123456789 | 123456789 | qwerty

7 1234567 | letmein 111111 1234 football 1234567890
8 letmein dragon 1234567 baseball 1234 1234567
9 | trustnoil 111111 iloveyou dragon 1234567 princess
10 |dragon | baseball |adobel123[@ |football baseball 1234

11 | baseball |iloveyou 123123 1234567 welcome login

12 | 111111 trustno1 admin monkey 1234567890 | welcome
13 |iloveyou | 1234567 | 1234567890 | letmein abc123 solo

14 | master sunshine | letmein abc123 111111 abc123
15 | sunshine | master photoshop!@ | 111111 1gaz2wsx admin

16 | ashley 123123 1234 mustang dragon 121212
17 | bailey welcome | monkey access master flower

18 | passwOrd | shadow shadow shadow monkey passwOrd
19 | shadow | ashley sunshine master letmein dragon
20 | 123123 football 12345 michael login sunshine
21 | 654321 jesus password1 | superman | princess master
22 | superman | michael princess 696969 qwertyuiop | hottie
23 | qazwsx ninja azerty 123123 solo loveme
24 | michael mustang trustno1 batman passwOrd zaqizaql
25 | Football | password1 | 000000 trustnot starwars password1

Security

November 27, 2017 11

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Public Service Announcement

* Check: ';--have i been pwned?
<https://haveibeenpwned.com>
— User/e-maill
— Services
— Common passwords

(-3 Security

A

November 27, 2017 12

Northeastern University

CS5200 - Database Management Systems

- Fall 2017 -

XKCD: Security Question

Derbinsky

-EMAIL ACCOUNT SETUP- | | Q: WHERE ARE THE .
TO VERIFY YOUR IDENTITY, BODIES BURIED? \BEHLTCDETTHREY' }
WE NEED TO ASKYoU A | | At TGEHIND THE ~) -
QUESTION NOBODY ELSE r
COULD ANSW —
5 g lo g ki
\

; Security

November 27, 2017

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Discretionary Access Control

« Users grant/revoke privileges to other users

— Starts with root/superuser/dba
— with GRANT OPTION

* Privileges typically apply at multiple levels
— Global, database, table, column

* Access matrix model
— Users x Objects

* Fairly universal

(-3 Security

o

November 27, 2017 14

CS5200 - Database Management Systems - Fall 2017 Derbinsky

Northeastern University

MySQL (user

php « - 3 able: user "Users and global privileges™
S8 3@ e -] Browse [Structure [] SQL 3¢ Insert | [id Export |5} Import =7 Privileges ° Operations 2 Triggers

(Recent tables) ... v # Name Type Collation Attributes Null Default Extra Action

& New 1 Host char(60) utf8_bin No & Change @ Drop ¢ Primary [Unique (=] Index [F Spatial (3] Fulltext [=] Distinct values
+—) chinook 2 User char(16) utf8_bin No «’ Change @ Drop > Primary |y Unique =] Index % Spatial | Fulltext -] Distinct values
‘:*_ information_schema 3 Password char(41) latin1_bin No 7 Change @ Drop /> Primary [y Unique =] Index [Spatial (] Fulltext (-] Distinct values
L mys&' 4 Select_priv enum(N’, 'Y’) utf8_general_ci No N 7 Change @ Drop > Primary [y Unique (=] Index [Spatial || Fulltext -] Distinct values

:_f ct:\:xvmns_priv 5 Insert_priv enum('N', 'Y") utf8_general_ci No N & Change @ Drop > Primary [Unique (=] Index ¥ Spatial 3| Fulltext [=] Distinct values

b db 6 Update_priv enum('N utf8_general_ci No N &’ Change @ Drop > Primary g Unique =] Index % Spatial 7| Fulltext |- Distinct values

k-~ event 7 Delete_priv enum('N' utf8_general_ci No N & Change @ Drop /> Primary [y Unique (=] Index [Spatial F| Fulltext =] Distinct values

i func 8 Create_priv enum(N’, 'Y’) utf8_general_ci No N 7 Change @ Drop > Primary [y Unique (=] Index [Spatial || Fulltext -] Distinct values

*::: g:lr:_r:;;:;gow 9 Drop_priv enum('N', 'Y") utf8_general_ci No N & Change @ Drop /> Primary [Unique (=] Index ¥ Spatial 7| Fulltext [=] Distinct values

1 help_keyword 10 Reload_priv enum(N', 'Y") utf8_general_ci No N &’ Change @ Drop > Primary yl Unique =] Index % Spatial 7| Fulltext - Distinct values

+ - help_relation 11 Shutdown_priv enum(N','Y") utf8_general_ci No N & Change @ Drop /> Primary [y Unique (=] Index [Spatial F| Fulltext [i] Distinct values

b help_topic 12 Process_priv enum(N’, 'Y’) utf8_general_ci No N 7 Change @ Drop > Primary [y Unique (] Index [Spatial || Fulltext -] Distinct values

AR e S EE 13 File_priv enum('N', 'Y") utf8_general_ci No N ¢’ Change @ Drop > Primary [Unique =] Index [Spatial [Fulltext (] Distinct values

~J innodb_table_stats “ N

r*:w ndb_binlog_index 14 Grant_priv enum(N', 'Y") utf8_general_ci No N &’ Change @ Drop > Primary gyl Unique =] Index % Spatial 7| Fulltext - Distinct values

~J plugin 15 References_priv enum('N', 'Y") utf8_general_ci No N & Change @ Drop /> Primary (g Unique (=] Index [Spatial F| Fulltext [=] Distinct values

£ proc 16 Index_priv enum(N’, 'Y’) utf8_general_ci No N ' Change @ Drop > Primary [y Unique (] Index [Spatial || Fulltext -] Distinct values
dig proc}s_priv» 17 Alter_priv enum('N', 'Y') utf8_general_ci No N & Change @ Drop /> Primary [Unique (=] Index ¥ Spatial 3| Fulltext [=] Distinct values

;‘: ;:;or::z_pnv 18 Show_db_priv enum(N', 'Y") utf8_general_ci No N &’ Change @ Drop > Primary gl Unique =] Index % Spatial 7| Fulltext - Distinct values

— slave_master_info 19 Super_priv enum(N utf8_general_ci No N & Change @ Drop /> Primary [y Unique (=] Index [Spatial | Fulltext [=] Distinct values

¢ slave_relay_log_info 20 Create_tmp_table_priv enum(N', utf8_general_ci No N 7 Change @ Drop > Primary [y Unique (=] Index [Spatial || Fulltext -] Distinct values

~ v slave_worker_info 21 Lock_tables_priv enum(N’,'Y') utf8_general_ci No N & Change @ Drop £ Primary [§ Unique (=] Index & Spatial () Fulltext [Distinct values

*:—: ;‘Z‘g—fjﬁv 22 Execute_priv enum(N', 'Y") utf8_general_ci No N &’ Change @ Drop > Primary gl Unique =] Index fZ Spatial 7| Fulltext = Distinct values

D " time_zone 23 Repl_slave_priv enum('N', 'Y") utf8_general_ci No N & Change @ Drop /> Primary [y Unique (=] Index [Spatial F| Fulltext [=] Distinct values

;1 time_zone_leap_second 24 Repl_client_priv enum(N', 'Y") utf8_general_ci No N 7 Change @ Drop > Primary [y Unique (=] Index [Spatial || Fulltext -] Distinct values

~# time_zone_name 25 Create_view_priv enum(N’,"Y") utf8_general_ci No N 7 Change @ Drop ./ Primary [Unique (] Index [Spatial [Fulltext 7] Distinct values

i t?me_zone_!rans?l?on 26 Show_view_priv enum(N', 'Y’) utf8_general_ci No N 7 Change @ Drop > Primary g Unique =] Index ffE Spatial] Fulltext |--] Distinct values

~ time_zone_transition_type N N " . . " "

r-‘r user 27 Create_routine_priv enum('N' utf8_general_ci No N & Change @ Drop /> Primary [y Unique (=] Index [Spatial | Fulltext [=] Distinct values
B performance_schema 28 Alter_routine_priv enum(N’, 'Y’) utf_general_ci No N 7 Change @ Drop > Primary [y Unique (=] Index [Spatial || Fulltext -] Distinct values
+ 4 test 29 Create_user_priv enum(N','Y") utf8_general_ci No N & Change @ Drop > Primary [Unique (=] Index [Spatial (] Fulltext =] Distinct values

30 Event_priv enum('N', 'Y") utf8_general_ci No N «’ Change @ Drop > Primary g Unique =] Index ¥ Spatial 7| Fulltext =] Distinct values
31 Trigger_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary g Unique (=] Index % Spatial) Fulltext (] Distinct values
32 Create_tablespace_priv enum(N', 'Y") utf8_general_ci No N 7 Change @ Drop > Primary |y Unique (] Index [Spatial || Fulltext -] Distinct values
33 ssl_type enum(", 'ANY’, 'X509', 'SPECIFIED') utf8_general_ci No 7 Change @ Drop ./ Primary [Unique (] Index [Spatial [Fulltext 7] Distinct values
34 ssl_cipher blob No None « Change @ Drop > Primary g Unique 4| Index fZ Spatial 7| Fulltext -] Distinct values
35 x509_issuer blob No None & Change @ Drop Primary g Unique 4] Index Z Spatial 3| Fulltext [Distinct values
36 x509_subject blob No None « Change @ Drop /> Primary y Unique j=| Index [Spatial 7| Fulltext -] Distinct values
37 max_questions int(11) UNSIGNED No 0 &’ Change @ Drop /> Primary [Unique (=] Index [Spatial] Fulltext (] Distinct values
38 max_updates int(11) UNSIGNED — No @ &’ Change @ Drop > Primary |y Unique =] Index &' Spatial 7] Fulltext |] Distinct values
39 max_connections int(11) UNSIGNED No 0 & Change @ Drop /> Primary [y Unique (=] Index [Spatial 5] Fulltext] Distinct values
40 max_user_connections int(11) UNSIGNED o @ 7 Change @ Drop > Primary |y Unique ;=] Index [Spatial || Fultext -] Distinct values
41 plugin char(64) utf8_bin Yes 7 Change @ Drop ./ Primary [Unique (] Index [Spatial (i Fulltext 7] Distinct values
42 authentication_string text utf8_bin Yes NULL «’ Change @ Drop > Primary g Unique 4| Index ¥ Spatial 7| Fulltext -] Distinct values
43 password_expired enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary g Unique (=] Index fF Spatial) Fulltext (] Distinct values

Security

November 27, 2017

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

MySQL (db

7] Server: mysql wampserver » @ Database: mysql » @ Table: db “"Database privileges”

7 Browse 4 Structure [] SQL 4 Search | #¢ Insert | @ Export &l

Name Type Collation Attributes Null Default Extr
1 Host char(60) utf8_bin No

2 Db char(64) utf8_bin No

3 User char(16) utf8_bin No

4 Select_priv enum('N', 'Y") utf8_general_ci No N
5 Insert_priv enum('N’, 'Y") utf8_general_ci No N
6 Update_priv enum('N’, 'Y") utf8_general_ci No N
7 Delete_priv enum('N', 'Y") utf8_general_ci No N
8 Create_priv enum('N', 'Y") utf8_general_ci No N
9 Drop_priv enum('N', 'Y") utf8_general_ci No N
10 Grant_priv enum('N’, 'Y") utf8_general_ci No N
11 References_priv enum('N’, 'Y") utf8_general_ci No N
12 Index_priv enum('N', 'Y") utf8_general_ci No N
13 Alter_priv enum('N', 'Y") utf8_general_ci No N
14 Create_tmp_table_priv enum('N’, 'Y") utf8_general_ci No N
15 Lock_tables_priv enum('N’, 'Y") utf8_general_ci No N
16 Create_view_priv enum('N', 'Y") utf8_general_ci No N
17 Show_view_priv enum('N', 'Y") utf8_general_ci No N
18 Create_routine_priv enum('N', 'Y") utf8_general_ci No N
19 Alter_routine_priv enum('N’, 'Y") utf8_general_ci No N
20 Execute_priv enum('N', 'Y") utf8_general_ci No N
21 Event_priv enum('N', 'Y") utf8_general_ci No N
22 Trigger_priv enum('N', 'Y") utf8_general_ci No N

Security

November 27, 2017 16

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

MySQL (tables_priv

7] Server: mysql wampserver » (@ Database: mysql » g Table: tables_priv “Table privileges”

7 Browse 4 Structure [SQL L, Search = %t Insert [Export |5} Import = =7 Privileges ” Operations 2% Triggers

Name Type Collation Attributes Null Default Extra

1 Host char(60) utf8_bin No

2 Db char(64) utf8_bin No

3 User char(16) utf8_bin No

4 Table name char(64) utf8_bin No

5 Grantor char(77) utf8_bin No

6 Timestamp timestamp on update CURRENT_TIMESTAMP No CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
7 Table_priv set('Select, 'Insert', 'Update’, 'Delete’, '‘Creat utf8_general_ci No

8 Column_priv set('Select, 'Insert’, 'Update’, 'References’) utf8_general_ci No

Security

November 27, 2017 17

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

MySQL (columns_priv

7] Server: mysql wampserver » @ Database: mysql » g Table: columns_priv “Column privileges™

5] Browse 4 Structure [] SQL L, Search ¥t Insert |[&d Export [=} Import | =7 Privileges #” Operations 32 Triggers

Name Type Collation Attributes Null Default Extra

1 Host char(60) utf8_bin No

2 Db char(64) utf8_bin No

3 User char(16) utf8_bin No

4 Table name char(64) utf8_bin No

5 Column_name char(64) utf8_bin No

6 Timestamp timestamp on update CURRENT_TIMESTAMP No CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTA
7 Column_priv set('Select’, 'Insert', 'Update’, 'References'’) utf8_general_ci No

Security

November 27, 2017 18

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Mandatory Access Control

* Objects are classified with security levels

» Users are afforded security clearance

« Government model, not typically
supported

(-3 Security

A

November 27, 2017 19

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Privilege Policies
* Principle of least privilege

* Privilege separation
— Multiple users, each with least privilege

 Abuse

— Unauthorized
« Mitigate escalation attacks
— Authorized

» Teachers changing grades
» Firing a DBA

ety Security

November 27, 2017 20

Northeastern University CS5200 - Database Management Systems -

SQL Injection

SQL manipulation for nefarious purpose

Method

« String manipulation
— Parameters, function calls

« Code injection (e.g. buffer overflow)

Goals
« Fingerprinting

— Learn about service via version, configuration
« DoS
« Bypass authentication/privilege escalation
 Remote execution

Protection
« Parameterized statements
* Filter input

 Limit use of custom functions

Security

November 27, 2017

Fall 2017 -

Derbinsky

21

Northeastern University CS5200 - Database Management Systems -+ Fall 2017 -

SQL Injection Examples

Original query:
“SELECT name, description
FROM items
WHERE id="" + reqg.args.get(‘id’,) + “"”

Result after injection:
SELECT name, description
FROM items
WHERE id='12’
UNION
SELECT username, passwd FROM users;--';

Original query:
“UPDATE users
SET passwd="" + reqg.args.get('pw’,) +
WHERE user=*" + req.args.get(‘user’,) +

[11%L)

Result after injection:
UPDATE users
SET passwd="...'
WHERE user='dude' OR 1=1;--";

Security

November 27, 2017

Derbinsky

22

Northeastern University

XKCD: Exploits of a Mom

HI, THIS 15

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

“’\\ Security

November 27, 2017

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

CS5200 - Database Management Systems -+ Fall2017 - Derbinsky

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Studerts;-~ 7

~OH.YES LUTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEARS STUDENT RECORDS.

I HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
L TOSANMIZE YOUR
DATABASE INPUTS,

23

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Denial of Service (DoS)

Any exposed interface
— Failed login
* Lock out users
» Resource utilization via long password verification

— Complex queries

Mitigation
— Resource limits
— Patching
— Monitoring

(-3 Security

A

November 27, 2017 24

CS5200 - Database Management Systems - Fall 2017

Northeastern University

- Derbinsky

XCKD: CIA

11 11 WHAT COMPUTER
HRACKERS BRIEFLY To0K W‘;’O“;’a‘:‘im HEAR: [[| B T
DOWN THE WEBSITE OF E HRCKED
THE CIA YESTERDAY... || INTO THE COMPUTERS SOMEONE ToRE DOWN
oF HE C/A 1/ A POSTER HUNG UP
-’ &Y THe C1A!

@@ / z

Security

November 27, 2017

25

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Protection

* Protect against internal attacks
— Oracle: up to 80% of data loss

* |solate DBMS
— Separate machine, VM

* Regular patching policies

* Audit logs

(-3 Security

A

November 27, 2017 26

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Inferential Security

* Relevant when offering parameterized access to
aggregate data
— But must protect sensitive individual data!

 Prior knowledge and/or clever exploration might
yield queries that reveal private information

— Find “average” salary of <insert conditions that
identify single individual>

* Techniques
— Minimum result set size threshold

— Added noise
— Group partitioning

) Security

November 27, 2017 27

Northeastern University

CS5200 - Database Management Systems

Fall 2017

Derbinsky

XKCD: Privacy Opinions

Security

November 27, 2017

OPINIONS ON INTERNET PRIVACY

THE PHILOSOPHER: THE CRYPTO NUT: THE. CONSPIRACIST:
’PRIVACY" 15 AN IMPRACTICAL | | MY DATA 15 SAFE BEHIND THESE (EAKS ARE JusT
WAY To THINK ABOUT DATA IN | | SIX LAYERS OF SMMETRIC | | THETIP OF THE ICEBERG.
A DIGITAL LJORLD 50 UNUKE. | | AND PUBLIC-KEY ALGORITHMS. | | THERE'S AWAREHOUSE
THE ONE IN WHICH OUR S0CI- IN UTAH WHERE THE NSA
s e T T DRRISIT? | Lo G Eeei
50 BORED : \
“ | | WiITH PEOPLE ABOUT L DONT KNOW HOW
S ? CRYPROGRAPHY, Y GOT 7 HERE.
THE NIHILIST: THE EXHIBITIONIST: THE SAGE:
TJOKES ON THEM, GATHERING | | MM T SURE HOPE THE NSA | | T DON'T KNOW OR CARE WHAT
ALL THIS DATA ON ME N e texrer | | DATA AMYONE HAS ABOUT ME.
MEANS ANYTHING. My SHIRT! BETTER TAKE ITOFF: DATA IS IMAGINARY,
GOOGLE, ARE Y0U THERE? THIS BURRITO IS REAL.
GOOGLE, THIS LOTION
FEELS S0000 GOOD.
f M A
\

i

28

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Encryption

Symmetric
— Single key encrypts/decrypts

Asymmetric
— 2 Keys: public encryption, private decryption

Hashing
— No decryption

Encryption theory is solid, implementation is tricky
— High-quality randomness
— Bug-free code

ety Security

November 27, 2017 29

Northeastern University

HEARTBLEED MUST
BE THE WORST WEB
SECURITY LAPSE EVER.

WORST 50 FAR.
GIVE VS TME.

P

November 27, 2017

XCKD: Heartbleed

I MEAN, THIS BUG ISNT

Just BROKENI ENCRYPTION.

IT LETS WEBSITE VISITORS
MAKE. A SERVER DISPENSE

RANDOM MEMORY (ONTENTS.

3

CS5200 - Database Management Systems -+ Fall2017 - Derbinsky

IT'S NOT JUST KEYS.
ITS TRAFAC DATA.
EMAILS. PASOWORDS.
EROTIC FANFCTION.

IS EVERYIHING
CDNFRON;SED?

WELL, THE ATTACK 1S
UMITED TO DATA SORED
IN COMPUTER MEMORY.

50 PAPER 15 SAFE.
AND CLAY TABLETS.

OUR IMAGINATIONS, ToO. |

9EE, WEW BE FINE.

2]

30

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Basics

* Encrypt database files
— Including backups!
— Native or 3"9-party wrapper

— Can be difficult to implement while being
resilient to restarts, high-performance

* Encrypt application communication
— Use https, SSH
— NOT http, telnet/FTP

(-3 Security

A

November 27, 2017 31

Northeastern University

-/ Security

November 27, 2017

CS5200 - Database Management Systems -

XCKD: Security

A CRYPTO NERD'S

IMAGINATION &

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR
CLOSTER To CRACK \T:

NO GooD! IT'S
uo% -BIT RSA‘

EVlL PLRN
1S FOILED! ™

WHAT WoULD
ACTVALLY HAPPEN:

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEus LS THE PASSWORD.

GOT IT,

7Q

Fall 2017 -

Derbinsky

32

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Sensitive Data

* When dealing with sensitive data, always
consider how It needs to be used

* |f only verification (e.g. password), hash

* |f usage, encrypt
— NOT clear text CC entry
— Better: encrypt CC

— Best: encrypt last 4 of CC + use private
payment processing server

(-3 Security

o

November 27, 2017 33

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Password Storage

 Many applications require authentication
— Website, mobile

* Sometimes you can use external
authentication
— LDAP, OAuth 2.0 via Google or Facebook

* Sometimes you need your own system

— So now we consider how to securely store
authentication secrets in a database

(-3 Security

o

November 27, 2017 34

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Attacker Goals and Threat Model

* Assume we have a system storing
usernames and passwords

* The attacker has access to the password
database/file

| wanna login to

those user

accounts!
Database

@_

p4ssWOrd

sandi puppies

Cracked Passwords

User Password

cbw p4ssWOrd

sandi puppies

amislove 3spr3ss0 amislove 3spr3ss0

e /‘ Security

November 27, 2017 35

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Checking Passwords

« System must validate passwords provided
by users

* Thus, passwords must be stored
somewhere

« Basic storage: plain text

password.txt

cbw p4sswOrd

sandi i heart doggies
amislove 93Gd9#jv*0x3N
bob security

.3 Security

st

November 27, 2017 36

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Problem: Password File Theft

Attackers often compromise systems

They may be able to steal the password file
— Linux: /etc/shadow

— Windows: c:\windows\system32\config\sam

* |f the passwords are plain text, what
happens?

— The attacker can now log-in as any uset,
including root/administrator

— The attacker can/will use them elsewhere >:(

 Passwords should never be stored in plain
text

(-3 Security

November 27, 2017 37

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Hashed Passwords

« Key idea: store encrypted versions of passwords

— Use one-way cryptographic hash functions

— Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2,
scrypt

» Cryptographic hash function transform input data into
scrambled output data

— Deterministic: hash(A) = hash(A)

— High entropy:
* MD5(‘security’) = €91e6348157868de9dd8b25c81aebfb9
« MD5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
. MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

— Collision resistant
» Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)
« Example: 221 tries for md5

November 27, 2017 38

Northeastern University CS5200 — Database Management Systems - Fall 2017 -

Hashed Password Example

‘ MDS(’p4sstrd') =
2a9d119df47ff993b662a8ef36f9ea20

User: cbw
‘ MD5(‘2a9d119df
= b35596ed3f(

hashed_passw <t

f993b662a8ef36f9ea20’)
134739292faa04f7ca3

cbw 2a29d119df47ff993b662a8ef36f9ea20
sandi 23eb06699dalba3ee5003e5f4636e79f

amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob €91e6348157868de9dd8b25c81aebfb9

Security

November 27, 2017

Derbinsky

3

g

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Attacking Password Hashes

Recall: cryptographic hashes are collision resistant

— Locating A’ such that hash(A) = hash(A’) takes a long time
(hopefully)

Are hashed password secure from cracking?
— No!

Problem: users choose poor passwords
— Most common passwords: 123456, password
— Username: cbw, Password: cbw

Weak passwords enable dictionary attacks

0 o)
N/

November 27, 2017 40

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Remember: Passwords Are Not Random

Top 25 most common passwords by year according to SplashData

Rank | 20111 | 20120 2013061 2014071 201508 20160

1 password | password | 123456 123456 123456 123456

2 123456 123456 password password | password password
3 12345678 | 12345678 | 12345678 12345 12345678 12345

4 | qwerty abc123 qwerty 12345678 | qwerty 12345678
5 |abcl123 qwerty abc123 qwerty 12345 football

6 monkey monkey 123456789 | 123456789 | 123456789 | qwerty

7 1234567 | letmein 111111 1234 football 1234567890
8 letmein dragon 1234567 baseball 1234 1234567
9 | trustnoil 111111 iloveyou dragon 1234567 princess
10 |dragon | baseball |adobel123[@ |football baseball 1234

11 | baseball |iloveyou 123123 1234567 welcome login

12 | 111111 trustno1 admin monkey 1234567890 | welcome
13 |iloveyou | 1234567 | 1234567890 | letmein abc123 solo

14 | master sunshine | letmein abc123 111111 abc123
15 | sunshine | master photoshop!@ | 111111 1gaz2wsx admin

16 | ashley 123123 1234 mustang dragon 121212
17 | bailey welcome | monkey access master flower

18 | passwOrd | shadow shadow shadow monkey passwOrd
19 | shadow | ashley sunshine master letmein dragon
20 | 123123 football 12345 michael login sunshine
21 | 654321 jesus password1 | superman | princess master
22 | superman | michael princess 696969 qwertyuiop | hottie
23 | qazwsx ninja azerty 123123 solo loveme
24 | michael mustang trustno1 batman passwOrd zaqizaql
25 | Football | password1 | 000000 trustnot starwars password1

Security

November 27, 2017 41

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Dictionary Attacks

English : List of

hashed_

Dictionary possible password.txt
password

B o) XS

Common

Passwords

 Common for 60-70% of hashed
passwords to be cracked in <24 hours

-7 Security

November 27, 2017 42

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Hardening Password Hashes

» Key problem: cryptographic hashes are
deterministic
— hash(‘p4ssw0rd’) = hash(‘p4sswOrd’)
— This enables attackers to build lists of hashes

« Solution: make each password hash unique
— Add a salt to each password before hashing
— hash(salt + password) = password hash
— Each user has a unique, random salt
— Salts can be stores in plain text

(-3 Security

o

November 27, 2017 43

Northeastern University CS5200 — Database Management Systems - Fall 2017 -+ Derbinsky

Example Salted Hashes

hashed_password.txt

cbw 229d119df47ff993b662a8ef36f9ea20

sandi 23eb06699dalba3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob €91e6348157868de9dd8b25c81aebfb9

hashed_and_salted_password.txt

cbw a8 af19c842f0c781ad726de7abad39b033
sandi OX 67710c2c2797441efb8501f063d42fb6
amislove hz 9d03e1f28d39ab373c59¢7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

: Security

November 27, 2017 44

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Attacking Salted Passwords

List of
possible
password

hashes

hashed
and_salted
password.txt

List of
¢ Ppossible
h password
hashes w/
salt 0X

c
sandi YYYY

Security

November 27, 2017 45

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Breaking Hashed Passwords

« Stored passwords should always be salted

— Forces the attacker to brute-force each
password individually

* Problem: it is now possible to compute
hashes very quickly
— GPU computing: hundreds of small CPU cores
— nVidia GeForce GTX Titan Z: 5,760 cores

— GPUs can be rented from the cloud very cheaply
« 2x GPUs for $0.65 per hour (2014 prices)

(-3 Security

o

November 27, 2017 46

Northeastern University

Examples of Hashing Speed

A modern x86 server can hash all possible 6
character long passwords in 3.5 hours
— Upper and lowercase letters, numbers, symbols
— (26+26+10+32)6 = 690 billion combinations

A modern GPU can do the same thing in 16
minutes

* Most users use (slightly permuted) dictionary
words, no symbols

— Predictability makes cracking much faster

— Lowercase + numbers 2 (26+10)6 = 2B
combinations

(-3 Security

o

CS5200 - Database Management Systems -+ Fall 2017 -

Derbinsky

November 27, 2017 47

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Hardening Salted Passwords

* Problem: typical hashing algorithms are too fast
— Enables GPUs to brute-force passwords

« Old solution: hash the password multiple times
— Known as key stretching
— Example: crypt used 25 rounds of DES

* New solution: use hash functions that are designed to
be slow

— Examples: bcrypt, PBKDF2, scrypt

— These algorithms include a work factor that increases the
time complexity of the calculation

— scrypt also requires a large amount of memory to
compute, further complicating brute-force attacks

EZNY)
Sy
St
1

November 27, 2017 48

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

bcrypt Example

* Python example; install the bcrypt
package

[cbw@ativ9 ~] python Work factor
>>> bcrypt

>>>password = “my super secret password”
>>>fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))
>>>slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))

>>>pw_from_user = (“Enter your password:”)
>>> bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
“It matches! You may enter the system”

“No match. You may not proceed”

Security

November 27, 2017 49

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Dealing With Breaches

« Suppose you build an extremely secure password
storage system

— All passwords are salted and hashed by a high-work
factor function

* |tis still possible for a dedicated attacker to steal
and crack passwords

— Given enough time and money, anything is possible
— E.g. The NSA

« Question: is there a principled way to detect
password breaches?

(-3 Security

o

November 27, 2017 50

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Honeywords

Key idea: store multiple salted/hashed passwords for each user
— As usual, users create a single password and use it to login
— User is unaware that additional honeywords are stored with their account

Implement a honeyserver that stores the index of the correct password for
each user

— Honeyserver is logically and physically separate from the password database

— Silently checks that users are logging in with true passwords, not honeywords

What happens after a data breach?
— Attacker dumps the user/password database...
— But the attacker doesn’t know which passwords are honeywords
— Attacker cracks all passwords and uses them to login to accounts
— If the attacker logs-in with a honeyword, the honeyserver raises an alert!

Security

November 27, 2017 51

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Honeywords Example

Cracked Passwords

User PW 1 PW 2 PW 3
cbw 123456 | p4ssWOrd = Turtles!
cbw I:> sandi puppies iloveyou blizzard
SHA512(“fI” | “p4ssWOrd”) > bHDJSI amislove coff33 | 3spr3ssO | qwerty

Database Honeyserver
aB y4DvF7 fl bHDJ8I = 52 Puu2s7
sandi Ox pIDS4F K2 R/p3Y8 8W S8x4Gk sandi 3
amislove 9j OF3g5H /s 03d5jW = cV 1sRbJ5

November 27, 2017 52

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Password Storage Summary

* Never store passwords in plain text

— Always salt and hash passwords before storing
them

* Use modern hash functions with a high work
factor (e.g. avoid mdd)

Implement honeywords to detect breaches

These rules apply to any system that needs
to authenticate users

— Operating systems, websites, etc.

(-3 Security

o

November 27, 2017 53

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

XCKD: Encryptic

HACKERS RECENTLY LEAKED /53 MILLION RDOBE. USER
EMAILS, ENCRYPTED PASSWORDS, AND PASSWORD HINTS,

ADOBE. ENCRYPTED THE PASSWORDS IMPROPERLY, MISUSING
BLOCK-MODE. 3DES. THE RESULT 15 SOMETHING WONDERFUL:

USER PASSWORD HINT

UetBacclab270246

HelBacclabZAzst WEATHER VANE. SWORD

UelBacckb2%2dh aD287eblealica NAMEL

Bbabbb27e06ek6d DUH

Sbabbb2Me06ebbd #0287eblealica (I)

Fbabbb2Me06ehed 85e9ddldalBade SF

UelBacclab270246 FAVORITE OF |Z APOSTLES

Tab2acBodobeScn Ta2d6a0u28Theble WITH YOUR OWN HAND YOU
HAVE DONE ALL THIS

aFIL2b6209eZb eadecletebi7397 SEXY EARLOBES

alfIb2b62i9eh2b GI2b2IT27d85 BEST TOS EPISODE.

373867ab00EAE7 6760217727435 SUGARLAND

TRacSodabein NAME + JERSEY #

HT7eIBATRs] ALPHA —
H776TBRAIRE]

ST7ek7BAA]

$7765T08A006241 0BVIOUS i
HT7eTOAIRN MICHAEL JRCKSON ‘
WA Readebd Wl Peidectds

3alcT2cadeby FdeoldTid4dectds HE DID THE MASH, HE DID THE
BTNl PORLOINED e aaeany
| 0208 7USNTaf Do GedenldMdiderls TON LIATER- T PAKEMNAL

THE GREATEST (ROSSWORD PUZZLE
IN THE HISIORY OF THE WORLD

5 Security

November 27, 2017 54

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Summary

* When dealing with database applications,
security needs to be a first-class citizen,
considered at all levels, preparing for
failure (the weakest link!)

— Obscurity # Security

* \WWe covered issues/best practices related
to authentication/authorization, common
attacks, inference control, and encryption

(-3 Security

o

November 27, 2017 55

Northeastern University

CS5200 - Database Management Systems -+ Fall2017 - Derbinsky

XKCD: Password Reuse

PASSWORD ENTROPY |5 | | SET UP AWEBSERVICE BAM, YOUVE GOTA
RARELY RELEVANT. THE || TODO SOMETHING SMPLE, | | FEW MILLION EMAILS,
REAL MODERN DANGER | | LIKE IMAGE HOSTING OR DEFAULT USERNAMES,
1S PASSWORD REUSE. TWEET SYNDICATION, S0 | | AND PRSSWORDS.
HW 502 || A FEW MLLION PEGRE

| s SET VP FREE ACCOUNTS,

PE D g

TONSOF PEORLE ysg | USE THE LIST AND SoE YOUVE Nowl GoT A Few
ONE PRSGWORD, | PRONES TOTRY AUDMATED | yxpe> TroysAND REAL
STRONGORNOT, | OGNS TOTHE 20 &R 30 IDENTITIES ON A FEW
FoR MosTACCouNTs, | MOST POPULAR SITES, RS | bz SERVICES, AND
BANKS AND PRYFRL ANDSUCH. | NognDy SSPELTS ATHING.
O oG .O) ADTHEN
me'?
FRCEBODK
OMAIL
PRV,
TUMER

I GOTSI’UCK.

T HosteD SOMA
M(FITABLE

WELL, THAT'S WHERE'

‘WHY DlD YOU 7K

T CoULD PROBABLY NET A LOT OF MONEY,
ONE WAY 0R ANOTHER, IF T DIDTHINGS

Yoo 0D “’"5’ CARERULLY. BUT RESEARCH SHOWS MORE

MONEY' DOESN'T MAKE PEOPLE HAPPIER,

NY ONCE THEY MAKE.

ENOUGH To AVOID

N\ DAY-TO-DAY
SERV’CES ANANCAL
STRESS.

T (oD MESS WITH PECPLE || S0, HERE T SIT; A
ENDLESSLY, BUTT. DOTHAT | [PUPPETMASTER WHO WANTS
ALREADY. TCOULD GETA | | NOTHING FROM HIS FUPPETS.
POLITICAL OR RELIGIOUS
1DER QUT 1O MosT TS THE SAME

OF THE. LoRLD, BUT PROGLEM OH?

SINCE MARCH OF GooGLE. \O

1997 T DONT _ HAS,

REALY BEUEVE ?i 0
IN ANYTHING.

—{GooGLE -}
OKAY, EVERYONE, WE CONTRAL WE ALRERDY DO!
THE WORLD'S INFORMATION. / SET UP A COMAANYWIDE

NOW IT’% TIME TO TURN EVIL. Tg:gz;‘r'buam \»IARP\RE’
IATS THE PLAN? IMENT EACH WEEK?
o MAE | rarsaor eves

BOATIONDS
O0H, DIBS ON
O} OF ;"bt\EY? \ Mmﬁmw,

1 OKAY,

UK
= o

Security

November 27, 2017 56

