Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Recovery

Lecture 15

Recovery

November 27, 2017 1

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Outline

1. Issues and Models
— Transaction Properties
— Storage Hierarchy
— Failure Mode
— System Log

2. UNDO Logging
— (Quiescent) Checkpoints

3. REDO Logging
4. UNDO/REDO Logging

5. Closing Notes

S N
AN
RAERYS
(-3 Recovery

A

November 27, 2017 2

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Transaction Properties

This lecture focuses on how to support transactions
in the context of certain types of failures

« Atomicity: need to UNDO writes from partially
completed transactions

« Consistency: need to make sure that after failure,
new transactions have a consistent start state

* Durability: need to REDO writes from committed
transactions

.3 Recovery

o

November 27, 2017 3

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Side Note: Consistency

* Most of the time we t

nink of consistency

from the DBMS standpoint

— Often in context of fai

ure, concurrency

« But it may be the case that transactions
themselves are poorly written w.r.t.

database constraints

— And thus are legitimately aborted

.3 Recovery

o

November 27, 2017 4

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Checkup

* Assume a database has the following
asserted constraint: A>B>0

* Which transactions will NOT necessarily
preserve consistency of the database?

— Provide an example

. A=2A;B=2B
. A=2A;B=A-1

Wi ;\/ Recovery

A

November 27, 2017 5

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Answer (A > B > 0)

. A=2A;B=2B
— WILL preserve

— If both started > 0, will remain so under
multiplication

— IfA>B,2A>2B

. A=2A;B=A-1
— WILL NOT (always) preserve

— Start: A=0.5, B=0.4
Result: A=1, B=0

A

November 27, 2017 6

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Storage Hierarchy

Assume the following computational
abstraction...

CPU

where RAM is volatile (contents do not durably
persist unless directed by CPU to disk)

- Recovery

November 27, 2017 7

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Operational Sequence
1. Input(X): Disk -> Memory

2. Read(X, t): Memory -> Variable

— Necessary for any computation via CPU
— Assumed to perform Input(X) if necessary

3. Write(X, 1): Variable -> Memory

4. Output(X): Memory -> Disk

BZENE
i) Recovery
o2l

November 27, 2017 8

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Faillure Modes

User error (e.g. bad data entry)
— Some handled via (application) constraints
— Not discussed here

Media failure (e.g. bad HD/SSD)
— Briefly touched on at the end

Catastrophic (e.qg. fire, flood)
— Briefly touched on at the end

System failure (e.g. OS/application crash)
— What happens when RAM doesn’t make it to disk?
— Our focus

ey Recovery

November 27, 2017 9

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

System Log

« AKA transaction log, recovery log, ...

* Think of it as an append-only file on disk

— Known format (sequence of “records”)
— Maintained by the DBMS

— As with actual DB data, buffered in RAM to improve
efficiency (but only disk contents survive failure)

* Main question: what set of rules can we put in
place to ensure correct transaction processing in
the face of system failure, while not severely
impacting performance?

3 Recovery

November 27, 2017 10

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky
Example
« Constraint: A=B
« T1: A=2A; B=2B
— Transaction consistent?
Memory
ikl A: 8
1. Read(A, 1) B:8
2. t=2%"
3. Write(A, t)
4. Read(B, 1) — —
5. t=2% < Disk 3
6. Write(B, t) .
7. Output(A) N
8. Output(B) ~— ' ——

G
‘7% Recove

November 27, 2017 11

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky
Example
« Constraint: A=B
« T1: A=2A; B=2B
— Transaction consistent?
Memory
il A: 816
1. Read(A, 1) B:8
2. t=2%"
3. Write(A, t)
4. Read(B, 1) — —
5. t=2% . Disk D
6. Write(B, t) .
7. Output(A) N
8. Output(B) ~— ' ——

P
7 R
eaby ecovery

A

November 27, 2017 12

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Example

 (Constraint;: A=B
« T1: A=2A; B=2B

— Transaction consistent?
Memory
i A: 816
1. Read(A, t) B:8 16
2. t=2"
3. Write(A, t)
4. Read(B, 1) P —
5. t=2% — Disk 2
6. Write(B, t) .
7. Output(A) N
8. Output(B) ~— | ———

S N
AN
RAERYS
(-3 Recovery

A

November 27, 2017 13

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Example

 (Constraint;: A=B
« T1: A=2A; B=2B

— Transaction consistent?
Memory
T A: 816
1. Read(A, t) B:816
2. t=2"
3. Write(A, t)
4. Read(B, 1) P —
5. t=2% — Disk 2
6. Write(B, t) _
7. Output(A) N g
8. Output(B) ~— | ———

S N
AN
RAERYS
(-3 Recovery

A

November 27, 2017 14

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Example

 (Constraint;: A=B
« T1: A=2A; B=2B

— Transaction consistent?
Memory
T A: 816
1. Read(A, t) B:816
2. t=2"
3. Write(A, t)
4. Read(B, 1) P —
5. t=2% — Disk 2
6. Write(B, 1) —
7. Output(A) @
8. Output(B) ~— ' ———

Consistency Fail - Now What!!??

o
IO

«..» Recovery

November 27, 2017 15

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Map from Here

Log Format Long-Term Strategy

* Approach #1: UNDO Approach #1: None
— Write data before COMMIT — Good luck with that...

« Approach #2: REDO « Approach #2: Checkpoint
— All modifications in RAM — Stops all transactions

until log on disk

* Approach #3: Approach #3: Non-
UNDO/REDO Quiescent Checkpoint
— Fat log records — Need more history

0 o)
et

November 27, 2017 16

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

UNDO Logging

« At the beginning of a transaction
<Ti, START>

* For every action generate undo log record containing old
value

<Ti, X, v>

« Before x is modified on disk, log records pertaining to x must
be on disk

— Write-Ahead Logging (WAL)
— FLUSH LOG

« Before commit is flushed to log, all writes of transaction must
be reflected on disk

<Ti, COMMIT>

Recovery

November 27, 2017 17

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Example
Step |Action | t [M-A|M-B|D-A[D-B]log

 M-* =Value * In memory
* D-* =Value * on disk

Recovery

November 27, 2017 18

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Example
mmnmmmm

8 <T1, START>

Recovery

November 27, 2017 19

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Example
mmnmmmm

8 <T1, START>
2 READA,f) 8 8 8 8

) Recovery

November 27, 2017 20

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Example
mmnmmmm

8 <T1, START>
2 READA,f) 8 8 8 8
3 t=2% 16 8 8 8

November 27, 2017 21

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Example
mmnmmmm

8 8 <T1,START>
2 READA,f) 8 8 8 8
3 t=2% 16 8 8 8
4 WRITEA, 1) 16 16 8 8 <T1,A 8>

| Recovery

November 27, 2017 22

Northeastern University

CS5200 - Database Management Systems - Fall 2017 -

Example

mmnmmmm

2 READ(A, 1)
3 t=2%

4 WRITE(A, 1)
5 READ(B, 1)

| Recovery

November 27, 2017

8
16
16

8

8
8
16
16

8

O 0 0 0 0o

8 <T1, START>
8

8

8 <T1,A, 8>
8

Derbinsky

23

Northeastern University

CS5200 - Database Management Systems -

Example

Step [Action | t |[M-A/M-B|D-AD-Bllog

1
2 READA,f) 8
3 t=2% 16
4 WRITEA, 1) 16
5 READB,t) 8
6 t=2% 16

| Recovery

Q

16
16
16

0 0 0 0 0 O

8 <T1, START>
8

8

8 <T1,A, 8>

8

8

Fall 2017 -

Derbinsky

November 27, 2017 24

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Example
Step |Action | t |[M-A|M-B|D-A[D-B[log

1 8 8 <T1,START>
2 READA,f) 8 8 8 8

3 t=2% 16 8 8 8

4 WRITEA, 1) 16 16 8 8 <T1,A 8>
5 READB,t) 8 16 8 8 8

6 t=2% 16 16 8 8 8

7 WRITEB,t) 16 16 16 8 8 <T1,B,8>

November 27, 2017)

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Example
Step |Action | t |[M-A|M-B|D-A[D-B[log
1 8 8 <T1, START>
2 READ(A, 1) 8 8 8 8
3 t=2*t 16 8 8 8
4 WRITEA,t) 16 16 8 8 <T1,A, 8>
5 READ(B, t) 8 16 8 8 8
6 t=2"t 16 16 8 8 8
7 WRITEB,t) 16 16 16 8 8 <T1,B, 8>
8 FLUSHLOG 16 16 16 8 8

November 27, 2017 26

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Example

Step |Action | t |[M-A|M-B|D-A[D-B[log
1 8 8 <T1, START>
2 READ(A, 1) 8 8 8 8
3 t=2*t 16 8 8 8
4 WRITEA,t) 16 16 8 8 <T1,A, 8>
5 READ(B, t) 8 16 8 8 8
6 t=2"t 16 16 8 8 8
7 WRITEB,t) 16 16 16 8 8 <T1,B, 8>
8 FLUSHLOG 16 16 16 8 8
9 OUTPUTA) 16 16 16 16 8

November 27, 2017 27

Northeastern University

READ(A, 1)
t=2%
WRITE(A, 1)
READ(B, 1)
t=2%
WRITE(B, 1)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

O © 0o N & OO & WO N =

November 27, 2017

8
16
16

8
16
16
16
16
16

CS5200 - Database Management Systems -+ Fall2017 - Derbinsky

Example
Step |Action | t |[M-A|M-B|D-A[D-B[log

8

16
16
16
16
16
16
16

16
16
16
16

—_—t kA

o O 00 00 00 0 00 0 0 o0

1

<T1, START>
<T1, A, 8>

8
8
8
8
8
8
8 <T1, B, 8>
8

8

6

28

Northeastern University

READ(A,) 8
=2 16
WRITE(A,) 16
READB,t) 8
= 16
WRITEB,t) 16
FLUSHLOG 16
OUTPUT(A) 16
OUTPUT(B) 16

16

- O O 00 N O O A WO N =

1
1

November 27, 2017

CS5200 - Database Management Systems -+ Fall2017 - Derbinsky

Example
Step |Action | t |[M-A|M-B|D-A[D-B[log

8

16
16
16
16
16
16
16
16

16
16
16
16
16

O 0 0 OO 0 0 0

16
16

8
8
8
8
8
8
8
8

8
16
16

<T1, START>

<T1, A, 8>

<T1, B, 8>

<T1, COMMIT>

29

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Example
Step |Action | t |[M-A|M-B|D-A[D-B[log
1 8 8 <T1, START>
2 READ(A, 1) 8 8 8 8
3 t=2*t 16 8 8 8
4 WRITEA,t) 16 16 8 8 <T1,A, 8>
5 READ(B, t) 8 16 8 8 8
6 t=2"t 16 16 8 8 8
7 WRITEB,t) 16 16 16 8 8 <T1,B, 8>
8 FLUSHLOG 16 16 16 8 8

9 OUTPUTA) 16 16 16 16 8
10 OUTPUT(B) 16 16 16 16 16
11 16 16 16 16 16 <T1, COMMIT>
12 FLUSHLOG 16 16 16 16 16

November 27, 2017 30

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

UNDO Recovery

 For all transactions that did not
COMMIT/ROLLBACK...

— Remember, if these log entries made it to disk, so
did the corresponding value operations

 From latest to earliest of <T1i, X, wv>
— WRITE(X, V)
— OUTPUT(X)

o Write <Ti, ABORT>

— Note, system failure during recovery doesn’t hurt,
because operations idempotent

.3 Recovery

o

November 27, 2017 31

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Example Failure (UNDO)
 Step |Action | t [M-A|M-B|D-A|D-Bllog

<T1, START>
<T1, A, 8>

<T1, B, 8>

<T1, COMMIT>

=

.2 Recovery

November 27, 2017 32

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Example Failure (UNDO)
 Step |Action | t [M-A|M-B | D-A|D-Bllog

<T1, START>
READ(A,) 8 8

=2 16 8

WRITEA,) 16 16

READB,t) 8 16 8
= 16 16 8
WRITE(B,t) 16 16 16
FLUSHLOG 16 16 16 8
9 OUTPUT(A) 16 16 16 16 8
10 OUTPUT®B) 16 16 16 16 16

O 0 0 OO 0 0 0

8

8

8

8 <T1,A, 8>
8

8

8 <T1, B, 8>
8

0 N o o A WO N =

Do nothing!
11 16 16 16 16 16 <T1, COMMIT> Commit on
12 FLUSHLOG 16 16 16 16 16 disk!

November 27, 2017 33

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Example Failure (UNDO)
 Step |Action | t [M-A|M-B|D-A|D-Bllog

<T1, START>

<T1, A, 8>

<T1, B, 8>

- Recovery

November 27, 2017 34

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Example Failure (UNDO)
 Step |Action | t [M-A|M-B | D-A|D-Bllog

, 8 8 <T1, START>

> READA,Y) 8 8 8 8

3 t=2% 16 8 8 8

4 WRITEA,) 16 16 8 8 <T1,A 8>

5 READB,t) 8 16 8 8 8

6 t=2% 16 16 8 8 8

7 WRITEB,§ 16 16 16 8 8 <T.B&
8 FLUSHLOG 16 16 16 8 8 Unsureﬁf any
9 OUTPUTA) 16 16 16 16 8 OUTPUTS
10 OUTPUT(B) 16 16 16 16 16 finished :(

November 27, 2017 35

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Checkup

Given the following UNDO log, what could be the values of A and B on disk?
 R: A=A+1; B=B-1
« S: A=2*A; B=B+1
« T:. A=A+1; B=3"B

1.
2.
3.
4.
5.
6.
/.
8.
9.
1

1

<S, START>
<T, START>
<S, A, 5>

<S, B, 10>
<S, COMMIT>
<T, A, 10>

<T, B, 11>
<R, START>
<T, COMMIT>
<R, A, 11>
<R, B, 33>

— O

-3 Recovery

November 27, 2017 36

Northeastern University

<S, START>
<T, START>
<S, A, 5>

<S, B, 10>
<S, COMMIT>
<T, A, 10>

<T, B, 11>
<R, START>
<T, COMMIT>
<R, A, 11>
<R, B, 33>

1.
2.
3.
4.
5.
6.
/.
8.
9.
1

1

— O

| Recovery

November 27, 2017

CS5200 - Database Management Systems -

Answer

Given the following UNDO log, what could be the values of A and B on disk?
 R: A=A+1; B=B-1
« S: A=2*A; B=B+1
« T:. A=A+1; B=3"B

Fall 2017 -

Derbinsky

A=11
A=12,

, B=33; A=12, B=32
B=33; A=11, B=32

COMMIT made it to disk for S & T, so their
modifications certainly made it to disk.

Last known values (@9): A=11, B=33

COMMIT didn’t make it to disk for R, so
unsure if any changes made it to disk. Also
aren’t unsure of OUTPUT order in R, so...

37

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

In the Long Run...

* Even if average number of records
remains the same, the log will grow
monotonically

— As will the time to recover!

» Hence the need for checkpointing

— Identify a point past which log is unnecessary
(for recovery)

by Recovery

A

November 27, 2017 38

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Basic Checkpoint

1. Stop accepting new transactions

2. Wait until all active transactions COMMIT or
ROLLBACK (in the log!)

— Termed: quiescence

3. FLUSH the log

4. Write <CKPT> to the log, FLUSH

— Point to stop checking for unfinished transactions in
future recovery — hence, could delete before!

5. Resume accepting transactions

ey Recovery

November 27, 2017 39

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Nonquiescent Checkpoint

« Step 1 (stop all incoming transactions)
might not be reasonable in all work loads

— Basically takes the database offline :(

« SO...

1. Write <START CKPT(T1, .. Tk)>

* |Includes transactions that have started, but not
yet completed

2. When T1...Tk have completed,
<END CKPT> and flush the log

.3 Recovery

o

November 27, 2017 40

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Recovery

 What happens if we hit a CKPT END?

— Scan back only as far as START: any incomplete
started after that point

« What happens if we hit a CKPT START?

— Failure must have happened during checkpointing :(

— BUT, we know exactly which incomplete transactions
(T1...Tk), so go back as far as their START

* Win: we only need to go back as far as START
CKPT since the last END CKPT

.3 Recovery

o

November 27, 2017 41

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

REDO Logging

A weakness of UNDO: need to write to
disk before COMMIT

 REDO protocol (via Deferred Update)

— For every action, generate redo log record
(containing new value)

— Before X is modified on disk, all log records
for the transaction that modified X (including
COMMIT) must be on disk

o

November 27, 2017 42

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

REDO Recovery

* For all transactions that did COMMIT...

— Remember, if these log entries made it to
disk, the whole transaction committed

 From earliest to latest of <Ti, X, v>
— WRITE(X, V)
— OUTPUT(X)

 Technically, optional (why?)

A

November 27, 2017 43

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

REDO Checkpoints

1. START(...), FLUSH LOG

2. Write DB changes for committed
transactions

3. END, FLUSH LOG

* Note: requires that the DBMS keep track
of changes to memory by committed
transactions that have not yet been
written to disk

November 27, 2017 44

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Checkup

Assume that initially A=5, B=10. Given the following REDO log,
what could be the values of A and B on disk?

1. <S, START>
2. <S, A 20>

3. <S, B, 30>

4. <S, COMMIT>
5. <R, START>
6. <R, B, 25>

7. <T, START>

8. <R, A, 50>

9. <T,B,2>

10. <T, COMMIT>

(5 NN
(i YR
&%) Recovery

November 27, 2017 45

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Answer

Assume that initially A=5, B=10. Given the following REDO log,
what could be the values of A and B on disk?

1. <S, START>

2. <S, A, 20> . . .

3. <S. B. 30> COMMIT made it to disk for S & T, so their
» modifications could have made it to disk.

4. <S, COMMIT>

5. <R, START> COMMIT for R did not make it to disk, so

6. <R, B, 25> new values certainly could not.

7. <T, START>

8. <R A 50> So... {5, 20} x {10, 30, 2}

9. <IT,B,?2> A=5, B=10; A=5, B=30; A=5, B=2

10. <T, COMMIT> A=20, B=10; A=20, B=30; A=20, B=2

Recovery

November 27, 2017 46

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

UNDO vs REDO

« UNDQO: write all before COMMIT
— High 1/O (

« REDO: in RAM till COMMIT

— Higher memory footprint, greater need for
recovery in case of failure :(

e Solution: combine as UNDO/REDO!

GAENE
Wi ;\/ Recovery

A

November 27, 2017 47

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

UNDO/REDO Logging

 Before X is modified on disk, flush
corresponding log record
<Ti, X, old, new>

* Flush log on commit

 Full flexibility as to when non-log data is
written to disk
— At the cost of fatter log entries

.3 Recovery

o

November 27, 2017 48

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Recovery

« Backwards pass (UNDQO)

— Start at the end of the log, go backwards to
the most recent checkpoint start

— UNDO actions of uncommitted transactions
* Including ABORT entry

* Forward pass (REDO)

— Start at the most recent checkpoint start, go
forward to the end of the log

— REDO actions of committed transactions

o

November 27, 2017 49

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

UNDO/REDQO Checkpoints

1. START(...), FLUSH LOG
2. Write all DB changes (committed or not)
3. END, FLUSH LOG

A

eco
November 27, 2017 50

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Checkup

Giverl)'l the following UNDO/REDO log, what could be the values of A and B on
disk”

<S, START>
<S, A, 10, 20>
<S, B, 15, 30>
<S, COMMIT>
<T, START>
<T, A, 20, 30>
<START CKPT(T)>
<T, B, 30, 10>
<T, COMMIT>
10. <R, START>
11. <R, A, 30, 50>
12. <END CKPT>
13. <R, B, 10, 1>
14. <R, COMMIT>

©ONOOA~WN =

| Recovery

A

November 27, 2017 51

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Answer
Giverp the following UNDO/REDO log, what could be the values of A and B on
disk”
1. <S5, START>
2. <S,A 10, 20>
3. <S,B,15,30> .
4. <S, COMMIT> At the end of the checkpoint, last memory
5 <T START> values were on disk (A=30, B=30).
6. <T,A, 20, 30> _
7. <START CKPT(T)> Any other log entries could have been
8. <T. B.30. 10> mirrored to disk by a delayed update.
9. <T, COMMIT>
10. <R, START> SO... {30, 50} x {30, 10, 1}
11. <R, A, 30, 50>
12. <END CKPT> A=30, B=30; A=30, B=10; A=30, B=1
13. <R.B.10.1> A=50, B=30, A=50, B=10, A=50, B=1

14. <R, COMMIT>

Recovery

A

November 27, 2017 52

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Checkup

Given the following UNDO/REDO log, what are the values of A/B in the database at the end
of recovery?

<S, START>

<S, A, 10, 20>
<S, B, 15, 30>
<S, COMMIT>

<T, START>

<T, A, 20, 30>
<START CKPT(T)>
<T, B, 30, 10>

<T, COMMIT>

10. <R, START>

11. <R, A, 30, 50>

12. <END CKPT>

13. <R, B, 10, 1>

14. <START CKPT(P, R)>
15. <P, START>

16. <R, COMMIT>

17. <P A, 50, 60>

©COoONOO AWM~

i/ Recovery

November 27, 2017 53

Northeastern University CS5200 — Database Management Systems - Fall 2017 + Derbinsky

Answer

Given the following UNDO/REDO log, what are the values of A/B in the database at the end
of recovery?

1. <S, START>

2. <S, A, 10, 20>

3. <S, B, 15, 30>

4, <S, COMMIT>

5. <T, START>

6. <T, A, 20, 30>

7. <START CKPT(T)> _ _ _
8. <T B,30, 10> All transactions but P have committed via the
9. <T, COMMIT> log, so look to last result values...

10. <R, START>

11. <R, A, 30, 50> _

12. <END CKPT> A=50

13. <R, B, 10, 1> B=1

14. <START CKPT(P, R)>

15. <P, START>

16. <R, COMMIT>

17. <P A, 50, 60>

Recovery

November 27, 2017 54

Northeastern University CS5200 - Database Management Systems + Fall 2017 - Derbinsky

Closing Notes

 Still need database/log copies to protect
against media failure

— RAID, remote backup (full vs incremental)

* The log will likely grow faster than the
database

— So typical to regularly delete what isn’t
necessary (when depends on logging type)

o

November 27, 2017 55

