Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL: Part 1
DML, Relational Algebra

Lecture 3

@) saL: Part 1 (DML, Relational Algebra)

SIS

September 17, 2017 1

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Relational Algebra

« The basic set of operations for the relational model

— Note that the relational model assumes sets, so some of the
database operations will not map

« Allows the user to formally express a retrieval over one or
more relations, as a relational algebra expression

— Results in a new relation, which could itself be queried (i.e.
composable)

« Why is RA important?
— Formal basis for SQL
— Used in query optimization

— Common vocabulary in data querying technology
— Sometimes easier to understand the flow of complex SQL

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 2

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

In the Beginning...

Chamberlin, Donald D., and Raymond F. Boyce. "SEQUEL.: A structured
English query language." Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) workshop on Data description, access and control. ACM, 1974.

“In this paper we present the data manipulation facility for

a structured English query language (SEQUEL) which can be

used for accessing data in an integrated relational data

base. Without resorting to the concepts of bound variables s o
and quantifiers SEQUEL identifies a set of simple operations Ettes
on tabular structures, which can be shown to be of |
equivalent power to the first order predicate calculus. A
SEQUEL user is presented with a consistent set of keyword
English templates which reflect how people use tables to
obtain information. Moreover, the SEQUEL user is able to et e ot 3,31 4
compose these basic templates in a structured manner in SR
order to form more complex queries. SEQUEL is intended

as a data base sublanguage for both the professional
programmer and the more infrequent data base user.”

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 3

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL.: Structured Query Language

» Declarative: says what, not how
— For the most part

« Oiriginally based on relational model/calculus
— Now industry standards: SQL-86, SQL-92, SQL:1999 (-2016)
— Various degrees of adoption

« Capabilities
— Data Definition (DDL): schema structure
— Data Manipulation (DML): add/update/delete
— Transaction Management: begin/commit/rollback
— Data Control: grant/revoke
— Query
— Configuration

R =

September 17, 2017 4

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Selection

* Qur first operation will be to select some
tuples from a relation

* This corresponds to the SELECT relational
algebra operator (0)

— General form: o_...qitions(R€lation)

* |n SQL this corresponds to the SELECT
statement

{C)) sQL:Part 1 (DML, Relational Algebra)

September 17, 2017 5

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL: Simplest Selection

SELECT *
FROM <table name>;

Gets all the attributes for all the rows in the
specified table. Result set order is arbitrary.

@) SQL:Part 1 (DML, Relational Algebra)

September 17, 2017 6

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Get all information about all artists

SELECT *
FROM artist;

Ttruelartist)

7.3 sQL: Part 1 (DML, Relational Algebra)

&

September 17, 2017 7

Northeastern University CS5200 — Database Management Systems -+ Fall 2017

+ Derbinsky

Projection/Renaming

* The ability to select a subset of columns from a

relation, discarding the rest, is achieved via the
PROJECT operator (m)

— General form: m__uinute 11t (R€lation)

— The “attribute list” can include function(s) on existing
attributes

« The ability to rename a relation and/or list of attributes
is achieved via the RENAME operator (p)

— General form: P<new relation name>(new attribute names)(Relatlon)

* |In SQL these get mapped to the attribute list of the
SELECT statement (+ the AS modifier)

) sQL: Part 1 (DML, Relational Algebra)

ember 17, 2017 8

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL: Attribute Control

SELECT <attribute list>
FROM <table name>;

Defines the columns of the result set. All
rows are returned. Result set order is
arbitrary.

) saL:Part 1 (DML, Relational Algebra)

September 17, 2017 9

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Attribute List (1)

* As we saw, to get all attributes in the table, use *
SELECT *
FROM employee;
O-true(em P | Oyee)

« For a subset, simply list them (comma separated)
SELECT FirstName, LastName
FROM employee;

T[FirstName,LastName(Otrue(em ployee))

* To rename (or alias) an attribute in the result, use AS
SELECT FirstName AS fname, LastName AS lname
FROM employee;

p(fname, Iname)(T[FirstName,LastName(Otrue(employee)))

0 SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 10

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Attribute List (2)

* In relational algebra, you can optionally
show a sequence of steps, giving a name
to intermediate relations

p(fname, Iname)(nFirstName,LastName(Otrue(employee)))

VS

ALL_E < o,,.(employee)
NAM E—E é 7TFirstName,LastName(AI—l—_E)
RESULT < p(fname, Iname)(NAI\/| E_E)

@) sQL:Part 1 (DML, Relational Algebra)

September 17, 2017 11

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Attribute List (3)

* In projection, an attribute can be the result of an expression
relating existing attributes

— Available functions depend upon DBMS

— It is good form to RENAME the result (and makes it easier to
access contents via code)

SELECT
Invoiceld, InvoicelLineld,
(UnitPrice*Quantity) AS cost
FROM invoiceline;

ALL_ILINES < oy, (invoiceline)

ILIN E—I NFO < 7Tlnvoiceld,InvoiceLineId,UnitPrice*Quantity('A‘I—I—_I LIN ES)
RESULT < p(lnvoioeld,InvoiceLineId,cost)(I LIN E_I N FO)

@) sQL: Part 1 (DML, Relational Algebra)

September 17, 2017 12

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Basic Queries (1)

Get all artist names

SELECT Name
FROM artist;

TName (Ttrue(artist))

7)) SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 13

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Basic Queries (2)

Get all employee names (first & last), with their full address info
(address, city, state, zip, country)

SELECT FirstName, LastName, Address, City, State, PostalCode, Country
FROM employee;

ALL_FE < 0¢pye(employee)

RESULT <+ TFirstName,LastName,Address,City,State,PostalCode,Country (ALL—E)

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 14

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Get all invoice line(s) with invoice, unit price,
quantity

SELECT Invoiceld, UnitPrice, Quantity
FROM invoiceline;

T Invoiceld,UnitPrice,Quantity (Utrue (ZTLUO’LC@ZZTLG))

7.3 sQL: Part 1 (DML, Relational Algebra)

D

September 17, 2017 15

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Conditional Selection

* Thus far we have included all tuples in a
relation

« However, the condition clause of the
SELECT operator permits Boolean
expressions to restrict included rows

* This corresponds to the WHERE clause of
the SQL SELECT statement

(€)) saL:Part 1 (DML, Relational Algebra)

September 17, 2017 16

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL: Choosing Rows to Include

SELECT <attribute list>
FROM <table name>
[IWHERE <condition list>];

Defines the columns of the result set. Only
those rows that satisfy the condition(s) are
returned. Result set order is arbitrary.

{C)) sQL:Part 1 (DML, Relational Algebra)

September 17, 2017 17

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Condition List ~ Boolean Expression
Clauses () separated by AND/OR

Operator Meaning Example
= Equal to Invoiceld = 2
<> Not equal to Name <> 'U2’
< or > Less/Greater than UnitPrice < 5
<= Or >= Less/Greater than or equal to UnitPrice >= 0.99
LIKE Matches pattern PostalCode LIKE 'T2%'
IN Within a set City IN ('Calgary', 'Edmonton')
IS or IS NOT Compare to NULL* ReportsTo IS NULL
BETWEEN Inclusive range (esp. dates) UnitPrice BETWEEN ©.99 AND 1.99

*There are actually is no concept of NULL in relational algebra

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 18

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Conditional Query (1)

Artist ~ Albu m MediaTy) pe
i MediaTypeld

Get the billing country of all invoices totaling more than $10

SELECT BillingCountry
FROM invoice
WHERE Total»>10;

T BillingCountry (UTotal> 10 (invoice))

7> sQL: Part 1 (DML, Relational Algebra)

September 17, 2017 19

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Conditional Query (2)

Artist ~ Albu m rac MediaTy) pe
MediaTypeld

Get all information about tracks whose name contains the word
“Rock”

SELECT *
FROM track
WHERE Name LIKE '%Rock’%’;

OName LIKE '"%Rock%’ (thk)

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 20

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Conditional Query (3)

Get the name (first, last) of all non-boss employees in Calgary
(ReportsTo is NULL for the boss).

SELECT FirstName, LastName
FROM employee

WHERE (ReportsTo IS NOT NULL) AND (City = 'Calgary’');

O ReportsTo#Employeeld AND City='Calgary’ (t’I“CLCk)
Since RA doesn’t have NULL, we could imagine having the Boss report to only herself

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 21

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Non-Standard Functions

« SQLite

— http://sqlite.org/lang.html

« MariaDB

— https://mariadb.com/kb/en/library/sql-statements/

Example: Concatenate fields

« SQLite
— SELECT (fieldl || field2) AS field3

« MariaDB
— SELECT CONCAT(fieldl, field2) AS field3

(€)) saL:Part 1 (DML, Relational Algebra)

September 17, 2017 22

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Complex Output Query (SQLite)

Artist Album MediaTy; p

ggggggg ity total

Albumid MediaTypeld , Stuttgart $1.98
ame 2 Berlin $1.98
2 Stutigart $13.86

4 Berlin $1.98

5 Berlin $3.96

g::: " s Berlin $13.86
Name 7 Berlin $5.94
s Stutigart $8.91

¢ Berlin $8.91

10 Frankfurt $1.98

41 Frankfurt $13.86

12 Frankfurt $14.91

1a Stuttgart $1.98

14 Stuttgart $3.96

15 Berlin $1.98

16 Berlin $1.98

17 Berlin $13.86

1g Stuttgart $5.94

19 Berlin $3.96

20 Berlin $5.04

21 Berlin $8.91

2o Frankfurt $1.98

23 Frankfurt $3.96

24 Frankfurt $5.94

Get all German invoices greater than $1, output the Clg using the
column header “german_city” and “total” prepending $ to the total

SELECT BillingCity AS german_city, ('$' || Total) AS total
FROM invoice
WHERE (BillingCountry = 'Germany') AND (Total > 1);

| SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 23

Northeastern University CS5200 — Database Management Systems -+ Fall 2017

Complex Output Query (MarlaDB)

Get all German invoices greater than $1, output the Clg using the
column header “german_city” and “total” prepending $ to the total

SELECT BillingCity AS german_city, CONCAT('$', Total) AS total

FROM invoice

WHERE (BillingCountry = 'Germany') AND (Total > 1);

G_INV «+ O BillingCountry='Germany’ AND Total>1<inv0ice)

DATA <« T BillingCity, CONCAT('$,Total) (G.INV) CONCAT is totally non-standard

RES < p(german.city.total) (DATA) for relational algebra

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017

Derbinsky

24

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL: Ordering Output

SELECT <attribute list>

FROM <table name>

WHERE <condition list>]

ORDER BY <attribute-order list>];

Defines the columns of the result set. Only
those rows that satisfy the conditions are
returned. Result set order is optionally
defined.

@) sQL:Part 1 (DML, Relational Algebra)

September 17, 2017 25

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Relational Algebra Note

» Since the relational model considers
relations to be sets (whereas SQL=bags),
there is no concept of order

* Some extensions to relational algebra
consider that the T operator converts the
input relation to a bag and outputs an
ordered list of tuples

— General form: 7_,uinute 11st-(Relation)

PSII N
(% | 7“
2 4

September 17, 2017 26

SQL: Part 1 (DML, Relational Algebra)

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL: Attribute Order List

« Comma separated list

* Format: <attribute name> [Order]
— QOrder can be ASC or DESC
— Default is ASC

Example: order all employee information by last name
(alphabetical), then first name (alphabetical), then birthdate
(youngest first)

SELECT *
FROM employee
ORDER BY LastName, FirstName ASC, BirthDate DESC;

TLastName,FirstName,BirthDate DESC (Utrue (employee))

@) SQL:Part 1 (DML, Relational Algebra)

September 17, 2017 27

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Ordering Query

MediaType
MediaTypeld | Invoiceld Customerld InvoiceDate BillingAddress BillingCity BillingState BillingCountry BillingPostalCode Total
Name 1 26 | 2012-08-05 00:00:00 2211 W Berry Street Fort Worth X USA 76110 23.86
2 201 25 | 2011-05-29 00:00:00 319 N. Frances Street Madison Wi USA 53703 18.86
3 103 24 2010-03-21 00:00:00 162 E Superior Street Chicago L USA 60611 15.86
g:::;d] 4 397 27 | 2013-10-13 00:00:00 1033 N Park Ave Tucson AZ USA 85719 13.86
Name 5 26 19 | 2009-04-14 00:00:00 1 Infinite Loop Cupertino CA USA 95014 13.86
6 145 16 | 2010-09-23 00:00:00 1600 Amphitheatre Parkway Mountain View CA USA 94043-1351 13.86
InvoiceLine 7 124 20 | 2010-06-22 00:00:00 541 Del Medio Avenue Mountain View CA USA 94040-111 13.86
Employe L 8 320 22 | 2012-11-06 00:00:00 120 S Orange Ave Orlando FL USA 32801 13.86
Empoeeld €1 o oed ® 5 23 2009-01-11 00:00:00 | 69 Salem Street Boston MA USA 2113 13.86
FirstName Customerld UnitPrice 10 222 21| 2011-08-30 00:00:00 801 W 4th Street Reno NV USA 89503 13.86
RemorisTe Tusthame Quanthy " 341 18 2013-02-07 00:00:00 | 627 Broadway New York NY USA 10012-2612 13.86
BirthD: Company Invoice 12 82 28 | 2009-12-18 00:00:00 3025700 E Salt Lake City uT USA 84102 13.86
:;’;:’ 2‘:3 %ﬂd 13 243 17 | 2011-12-01 00:00:00 1 Microsoft Way Redmond WA USA 98052-8300 13.86
City State 14 311 28 | 2012-09-28 00:00:00 3025700 E Salt Lake City uT USA 84102 11.94
State Country BillingAddress 15 298 17 | 2012-07-31 00:00:00 1 Microsoft Way Redmond WA USA 98052-8300 10.91
Country PostalCode BillingCity
PostalCode Ph
Phone Fax BillingCountry
Fax Email BillingPostalCode
Email L supportRepld Total

Get all invoice info from the USA with greater than or equal to
$10 total, ordered by the total (highest first), and then by state
(alphabetical), then by city (alphabetical)

SELECT *

FROM invoice

WHERE (BillingCountry = 'USA') AND (Total >= 10)
ORDER BY Total DESC, BillingState ASC, BillingCity;

TTotal DESC,BillingState, BillingCity (O (BillingCountry='USA")A(Total>10) (iNV0ICE))

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 28

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL: Set vs. Bag/Multiset

By default, RDBMSs treat results like
bags/multisets (i.e. duplicates allowed)

 Use DISTINCT to remove duplicates
* For relational algebra, 6(Relation)

SELECT [DISTINCT] <attribute list>
FROM <table name>

WHERE <condition list>]

ORDER BY <attribute-order list>];

@) sQL:Part 1 (DML, Relational Algebra)

September 17, 2017 29

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Example

SELECT BillingState

FROM invoice

WHERE BillingCountry="USA’

ORDER BY BillingState;

O BillingCountry='US A’ (TBillingState (invaice))

VS.

SELECT DISTINCT BillingState
FROM invoice

WHERE BillingCountry="'USA’
ORDER BY BillingState;

5(0BillingCountry:’ USA’ (TBillingState (inUO’iCG)))

Z3) saL: Part 1 (DML, Relational Algebra)

N s
D=

September 17, 2017 30

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Set Operations

Use UNION, INTERSECT, EXCEPT/MINUS to
combine results from queries
— Fields must match exactly in both results
— By default, set handling

« Use ALL after to provide multiset
— Support is spotty here

R1 UNION R2 R1 INTERSECT R2 R1 MINUS R2 R2 MINUS R1

@ @ @ (B

“ SQL: Part 1 (DML, Relational Algebra)

September 17,2017 31

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Combining Queries (1)

aaaaaaaa
MediaTypeld city
Name

aaaaaaaaaaaaaaa

™M

Playlistid
Name
Employeeld [€—

Customer
FFFFFFF Customerld UnitPrice
.............. Quantity
RRRRRRRR LastName
aaaaaaaaaaaaaaaa Invoice
eeeeeeeeeeeeeeeeeeeeeeee
Address cty | L——customerid
City

sssss

nnnnnnnnnnnnnnnnnn
ccccccccccccccccccccccccccc
ooooooooooooooo

\\\\\\\\\\\\\\
llllllllllllllllllll

Get all Canadian cities in which customers live
(call result “city”, i.e. lowercase)

SELECT City AS city
FROM customer
WHERE Country = 'Canada’;

P(city) (WCity (UCountryZ’ Canada’ (customer)))

7. sQL: Part 1 (DML, Relational Algebra)

September 17, 2017 32

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Combining Queries (2)

1 Edmonton
2 Calgary
3 Calgary
4 Calgary
s Calgary
¢ Calgary
7 Lethbridge
g Lethbridge

Get all Canadian cities in which employees live
(call result “city”, i.e. lowercase)

SELECT City AS city
FROM employee
WHERE Country = 'Canada’;

P (city) (WCity (UCountry:’Canada’ (emplayee)))

Y SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 KK

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Get all Canadian cities in which employees OR
customers live (including duplicates)

SELECT City AS city FROM customer WHERE Country = 'Canada’
UNION ALL
SELECT City AS city FROM employee WHERE Country

‘Canada’;

R1 « P(city) (WCity(O-Country:’Canada’ (CUStOmer)))
R2 + p(city) (WCity<O-Count'ry:’Canada’ (empZOyee)))
RESULT « 7(R1) UT(R2)

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 34

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Combining Queries (4)

aaaaaaa

1 Calgary

» Edmonton
3 Halifax
o] 4+ Lethbridge
J 5 Montréal

g Ottawa

||||||||| g Vancouver

aaaaaaaaaaaaaaa g Winnipeg

Employeeld [€—
Customer
FFFFFFF Custs 1d UnitPrice v
.............. Quantity 10 VYellowknife
RRRRRRRR LastName
llllllllllllllll Invoice
eeeeeeeeeeeeeeeeeeeeeeee
Address City
Cif

CCCCCCCCCC

sssss

nnnnnnnnnnnnnnnnnn
ccccccccccccccccccccccccccc
ooooooooooooooo

\\\\\\\\\\\\\\
llllllllllllllllllll

Get all Canadian cities in which employees OR
customers live (excluding duplicates)

SELECT City AS city FROM customer WHERE Country ‘Canada’
UNION

SELECT City AS city FROM employee WHERE Country

‘Canada’;

R1 « P(city) (WCity (UCOuntry:’Canada’ (CU/Stomer)))
R2 P(city) (WCity (000untry:’0anada’ (emPZOyee)))
RESULT < R1U R2

Y SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 35

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Combining Queries (5)

aaaaaaaa
MediaT, ypeld l city
Name 1 Edmonton

eeeeeeee

|||||||||
aaaaaaaaaaaaaaa

Employeeld [€—

Customer
FFFFFFF Customerld UnitPrice
Tte | | [FirstName Quantity
RRRRRRRR LastName
aaaaaaaaaaaaaaaa Invoice
eeeeeeeeeeeeeeeeeeeeeeee
Address cty | L——customerid
City 1t

nnnnnnnnnnnnnnnnnn
ccccccccccccccccccccccccccc
nnnnn

\\\\\\\\\\\\\\
llllllllllllllllllll

Get all Canadian cities in which employees AND customers live
(excluding duplicates)

[no MySQL support]

SELECT City AS city FROM customer WHERE Country
INTERSECT
SELECT City AS city FROM employee WHERE Country

'Canada’

‘Canada’;

Rl « P(city) (WCity (UCOuntry:’Canada’ (C’LLStOmGT)))
R2 «+ P(city) (ﬂ-C’ity (UCountry:’Canada’ (8mpl0y€€)))
RESULT < R1N R2

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 36

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Combining Queries (6)

aaaaaa pe -
city
1 Halifax
2 Montréal
3 Ottawa
4 Toronto
| 5 Vancouver
s Winnipeg
7 Yellowknife

All Canadian cities in which customers live BUT employees do not
(excluding duplicates)

[no MySQL support]

SELECT City AS city FROM customer WHERE Country = 'Canada’
EXCEPT
SELECT City AS city FROM employee WHERE Country = 'Canada’;

R1 <« P(city) (ﬂ-City(O-Country:’C’anada’ (Customer)))
R2 < P(city) (ﬂ-City(O-C’ountry:’Canada’ (6mpl0y6€)))
RESULT + R1 — R2

)] SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 37

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Joining Multiple Tables

« SQL supports two methods of joining tables, both of
which expand the FROM clause

— Basic idea: take Cartesian product of rows, filter

* The first is called a “soft join” and is older and less
expressive

— Not recommended
— Not covered in detall

* The second uses the JOIN keyword and supports
more functionality

* Relational algebra: R, R,

<join condition>

@) saL: Part 1 (DML, Relational Algebra)

R =

September 17, 2017 38

Northeastern University CS5200 — Database Management Systems - Fall 2017 - Derbinsky

Intuition: Cartesian Product, Filter (1)

ALPHA ALPHA X BETA

EEENETE

X 1 X 1 X [

Y 2 X 1 y i

z 3 y 2 X |

y 2 y i

BETA 7 3 X |

e | d : s y i

Northeastern University CS5200 — Database Management Systems - Fall 2017 - Derbinsky

Intuition: Cartesian Product, Filter (2)

ALPHA ALPHA X BETA | ALPHA.A = BETA.C

| b

X 1 X 1 X i

y 2 y 2 y i

z 3 y 2 X |

y 2 y i

BETA z 3 X |

< | 4 : s y i

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Simple Join

STUDENT

I N N N S
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLAss
1. Find all SSN in table Class where Class=MATH650 [IUCC I IEEFENS
2. Find all GPA in table Student where SSN=#1 305-61-2435 COMP355

422-11-2320 COMP355

Approach: cross all rows in STUDENT with all rows in
CLASS and keep the Student(GPA) of those where

STUDENT(SSN)=CLASS(SSN) and 305-61-2435 MATH650
CLASS(Class)=MATH650 422-11-2320 BIOL110

533-69-1238 MATH650

7> sQL: Part 1 (DML, Relational Algebra)

September 17, 2017 41

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Simple Join — JOIN

STUDENT

I N N N S
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLAss
S el e STne il T
STUDENT(SSN)=CLASS(SSN) and B I
CLASS(Class)=MATHG650 422-11-2320 COMP355
SELECT STUDENT.GPA DEEROHZE [LVl
FROM STUDENT INNER JOIN CLASS 305-61-2435 MATH650

ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650';

422-11-2320 BIOL110

Y SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 42

Northeastern University CS5200 — Database Management Systems - Fall 2017 - Derbinsky

Simple Join — Soft

STUDENT

m“m-m
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLAss
Approach: cross all rows in STUDENT with all rows in Class
CLASS and keep the GPA of those where m-
STUDENT(SSN)=CLASS(SSN) and S llass | ColPEes
CLASS(Class)=MATHG650 422-11-2320 COMP355
SELECT STUDENT.GPA
FROM STUDENT, CLASS Soft Joins (older style) intermix
WHERE STUDENT.SSN=CLASS.SSN AND row filtration with

CLASS.Class="MATH650"; table join conditions

) sQL: Part 1 (DML, Relational Algebra)

September 17, 2017

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Simple Join — Relational Algebra

STUDENT

I N N N S
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLass
Approach: cross all rows in STUDENT with all rows in Class
CLASS and keep the GPA of those where m-
STUDENT(SSN)=CLASS(SSN) and B I
CLASS(Class)=MATHG650 422-11-2320 COMP355

533-69-1238 MATH650

JOIN < STUDENT <srupENT.SSN=CLASS.ssN CLASS
M650 < ocra8S.Class=' MATH650 (JOIN)
RES + WSTUDENT.GPA(M65O) 422-11-2320 BIOL110

305-61-2435 MATH650

7% sQL: Part 1 (DML, Relational Algebra)

September 17, 2017 44

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL: Join Syntax

SELECT [DISTINCT] <attribute list>
FROM <table list>

WHERE <condition list>]

ORDER BY <attribute-order list>];

Table List
(T1 <join type> T2 [ON <condition list>])

<join type> T3 [ON <condition list>]..

@) sQL:Part 1 (DML, Relational Algebra)

September 17, 2017 45

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Join Types

[INNER] JOIN

A B

LEFT [OUTER] JOIN Row must at least exist in the table to the left

Row must exist in both tables

added with NULL
A< B ?)
RIGHT [OUTER] JOIN Row must exist at least in the table to the right
(padded with NULL)
At B
FULL OUTER JOIN Row exists in either table
added with NULL
AT B ®)

@) sQL:Part 1 (DML, Relational Algebra)

September 17, 2017 46

Derbinsky

Northeastern University CS5200 - Database Management Systems - Fall 2017 -

Join Type Example (1)

ALPHA SELECT *
_“ FROM Alpha INNER JOIN Beta ON
Alpha.a=Beta.c
X 1
y 2
‘ 3 Alpha >MAipha.a=Beta.c Beta
BETA
< | d
W] y 2 y i

Northeastern University CS5200 — Database Management Systems - Fall 2017 - Derbinsky

Join Type Example (2)

ALPHA SELECT *
_“ FROM Alpha LEFT OUTER JOIN Beta ON
Alpha.a=Beta.c
X 1
y 2
z 3 Alph& XAlpha.a=Beta.c Beta
BETA
e e
w _ NULL NULL
. i y 2 y I
z 3 NULL NULL

7> sQL: Part 1 (DML, Relational Algebra)

September 17, 2017 -8

Northeastern University CS5200 — Database Management Systems - Fall 2017 - Derbinsky

Join Type Example (3)

ALPHA SELECT *
_“ FROM Alpha RIGHT OUTER JOIN Beta ON
Alpha.a=Beta.c
X 1
y 2
z 3 Alph& DL Alpha.a=Beta.c Beta
BETA
e | 4
W - y 2 Y 1
y i NULL NULL W -

) SQL:Part 1 (DML, Relational Algebra)

September 17, 2017 49

Northeastern University CS5200 — Database Management Systems - Fall 2017 - Derbinsky

Join Type Example (4)

ALPHA SELECT *
_“ FROM Alpha FULL OUTER JOIN Beta ON
Alpha.a=Beta.c
X 1
y 2
z 3 Alpha PILAlpha.a=Beta.c Beta
BETA
e 8
W _ NULL NULL
. i y 2 y I
z 3 NULL NULL
NULL NULL W -

7% sQL: Part 1 (DML, Relational Algebra)

September 17, 2017 50

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Notes on Joins

« When dealing with multiple tables, it is advised to use full
attribute addressing (table.attribute) to avoid confusion

— Tip: when listing the table name, give it a shortcut
SELECT * FROM tablel t1

Ttrue(pr1(tablel))

. NATURAL (R, * R,)

— Optional shortcut if joining attribute(s) have same name(s) in
both tables

« Support/syntax can be spotty
— Particularly full outer, natural

« When joining, the new set of available attributes (*) is the
concatenation of the attributes from both tables

@) SQL:Part 1 (DML, Relational Algebra)

September 17, 2017 51

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

MediaTypeld

Get the cross product of genres and media types

SELECT *
FROM genre INNER JOIN mediatype;

Tirue(genre X1 mediatype)

7> sQL: Part 1 (DML, Relational Algebra)

September 17, 2017 52

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

EEEEE L—{ supportRepid

Get all track information, with the appropriate genre name and media
type name, for all jazz tracks where Miles Davis helped compose

SELECT *

FROM (track t INNER JOIN mediatype mt ON t.MediaTypeId=mt.MediaTypeld)
INNER JOIN genre g ON t.Genreld=g.Genreld

WHERE g.Name='Jazz' AND t.Composer LIKE '%Miles Davis’%';

J1 Pt (traCk) l><|t.MecliaTypeId:mt.Medz’aTypeId Pmt (mediatype)
J2 +— J1 I><]t.Genreld:g.Genre]d pg (967&7“6)

RES <« O0g.Name='Jazz' AND t.Composer LIKE ’%MilesDcwis%’(Jz)

SQL: Part 1 (DML, Relational Algebra)
September 17, 2017 53

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

12| Black Sabbath

Get all artist information for those whose name
begins with ‘Black’, sort by name (alphabetically)

SELECT *

FROM artist

WHERE Name LIKE 'Black’’
ORDER BY Name ASC;

7-]\fa/rne(O-]\fa,me LIKFE 'Black%/’ (CL?"‘tiSt))

Y SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 54

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Advanced Joins (2)

MediaTyj pe
MedisTypead | Artistld Name Albumld Title Artistld
1 1 ‘ Black Label Society 14 | Alcohol Fueled Brewtality Live! [Disc 1] ‘ 11
2 11 | Black Label Society 15 | Alcohol Fueled Brewtality Live! [Disc 2] 11
eeeeeee | 3 12 ‘ Black Sabbath 16 | Black Sabbath ‘ 12
] 4 12 | Black Sabbath 17 | Black Sabbath Vol. 4 (Remaster) 12

|||||||||
aaaaaaaaaaaaaaa

Employeeld [€—

Customer
FFFFFFF Customerld UnitPrice
Tte | | [FirstName Quantity
RRRRRRRR LastName
aaaaaaaaaaaaaaaa Invoice
eeeeeeeeeeeeeeeeeeeeeeee
Address cty | L——customerid
City

nnnnnnnnnnnnnnnnnn
ccccccccccccccccccccccccccc
ooooooooooooooo

\\\\\\\\\\\\\\
llllllllllllllllllll

EEEEE L—{ supportRepld Total

Get all artist AND album information for those artists whose
name begins with ‘Black’ (don’t include those without albums),
sort by artist name, then album name

SELECT *

FROM artist art INNER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'Black¥%’

ORDER BY art.Name ASC, alb.Title ASC;

J part(artiSt) Mart. ArtistId=alb. ArtistId palb(album)

S < OName LIKE 'Black% (J)
RES + Tart.Name,alb.Title(S)

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 55

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Advanced Joins (3)

....... Track MediaType
[tz m foeme v MedaTupeld | Artistld Name Albumid Title Artistld
Artstid et q 169 | Black Eyed Peas {null} ‘ {null} {null}
“““““““ 2 11 | Black Label Society 14 | Alcohol Fueled Brewtality Live! [Disc 1] 11
}M EL'\L‘TLk] O — J‘ a 11 | Black Label Society ‘ 15 ‘ Alcohol Fueled Brewtality Live! [Disc 2] 1
4 12 | Black Sabbath 16 | Black Sabbath 12
eeeeeeee 5 12 | Black Sabbath ‘ 17 ‘ Black Sabbath Vol. 4 (Remaster) 12

nnnnnnnn
nnnnnnnn
aaaaaaa

«««««

zzzzz

Get all artist AND album information for those artists whose
name begins with ‘Black’ (do include those without albums!),
sort by artist name, then alobum title

SELECT *

FROM artist art LEFT OUTER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'BlackX%’

ORDER BY art.Name, alb.Title;

J part(artiSw Xart. ArtistId=alb. ArtistId palb<album)

S < OName LIKE 'Black% (J)
RES + 7-cw"t.Ncm@e,alb.Title(S)

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 56

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Advanced Joins (4)

| Artistld Name Albumid Title
1 169 | Black Eyed Peas ‘ {null} {null}
,,,,, 2 11 | Black Label Society 14 | Alcohol Fueled Brewtality Live! [Disc 1]
“““““““ } a 11 | Black Label Society ‘ 15 | Alcohol Fueled Brewtality Live! [Disc 2]
4 12 | Black Sabbath 16 | Black Sabbath
5 12 | Black Sabbath ‘ 17 | Black Sabbath Vol. 4 (Remaster)

Get all artist AND album information for those artists whose name
begins with ‘Black’ (do include those without albums!), provide only a
single correct Artistld, sort by artist name, then album title

SELECT art.ArtistId, art.Name, alb.AlbumId, alb.Title

FROM artist art LEFT OUTER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'Black%’

ORDER BY art.Name, alb.Title;

J Part (CLTtZSt) DXart. ArtistId=alb. ArtistId palb(album)

S < OName LIKE 'Black% (J)
P <« 7Tart.ArtistId,art.Name,alb.AlbumId,alb.Title(S)
RES + Tart.Name,alb.Title(P>

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 57

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Advanced Joins (5)

Trackld tName Composer UnitPrice Title mName gName
1 1138 ‘ Give Me Novacaine ‘ Green Day 0.99 | American Idiot ‘ MPEG audio file Alternative & Punk

Get track id, track name, composer, unit price, aloum title,

media type name, and genre for the track titled “Give Me
Novacaine”

SELECT t.TrackId, t.Name AS tName, t.Composer, t.UnitPrice,
a.Title, m.Name AS mName, g.Name AS gName

FROM ((track t INNER JOIN album a ON t.AlbumId=a.AlbumId)

INNER JOIN mediatype m ON t.MediaTypeld=m.MediaTypeld)

INNER JOIN genre g ON t.GenreIld=g.Genreld

WHERE t.Name='Give Me Novacaine';

TA < pi(track) > AtbumId=a. AlbumId Pa(album)
M<—TA X MediaTypeld=m.MediaTypeld Pm (mediatype)
G+ M Nt.Gen'reId:g.GenreId pg (genre)
S Ot.Name='Give Me Novacaine/(G)
P« 7"’t.T”mLckId,t.Ncnne,t.C’omposer,t.UnitPrice,a.Title,7n.No:xme,g.Ncnne(S)

RES + p(TrackId,tName,Composer,UnitPrice,Title,mName,gName) (P)

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 58

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Aggregate Function

* An aggregate function takes the value of a
field (or an expression over multiple fields)
for a set of rows and outputs a single value

* When used alone, an aggregate function
reduces a set of rows to a single row

— In a moment we’ll get to grouping by field(s)

« Common aggregate functions include
MAX, MIN, SUM, AVG, COUNT

— Relational Algebra: <grouping Iist>?<function Iist>(R)

{23) saL: Part 1 (DML, Relational Algebra)

ember 17, 2017 59

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Continuing Our Example

STUDENT

I N O N S T
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLAss
S el e STne il T
STUDENT(SSN)=CLASS(SSN) and B I
CLASS(Class)=MATHG650 422-11-2320 COMP355
SELECT STUDENT.GPA DEEROHZE [LVl
FROM STUDENT INNER JOIN CLASS 305-61-2435 MATH650

ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650';

422-11-2320 BIOL110

Y SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 60

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Now Take the Average!

STUDENT
IS N N T Y KT
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.23
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25

Goal: find the average GPA of students in MATH650 CLAss
Approach: cross all rows in STUDENT with all rows in Class
CLASS and keep the GPA of those where m

STUDENT(SSN)=CLASS(SSN) and B I
CLASS(Class)=MATHG650, average result set 422-11-2320 COMP355
SELECT AVG(STUDENT.GPA) AS aGPA 533-63-1238 MATH650
FROM STUDENT INNER JOIN CLASS 305-61-2435 MATH650

ON STUDENT.SSN=CLASS.SSN

. . 422-11-2320 BIOL110
WHERE CLASS.Class='MATH650';

Y SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 61

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Now Take the Average!

STUDENT
IS N N T Y KT
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.23
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25

Goal: find the average GPA of students in MATH650 CLAss
Approach: cross all rows in STUDENT with all rows in Class
CLASS and keep the GPA of those where m

STUDENT(SSN)=CLASS(SSN) and el B
CLASS(Class)=MATHG650, average result set 422-11-2320 COMP355
J < STUDENT <s7ypENT.SSN=CLASS.ssN CLASS 533-69-1238 MATH650
S < 0cLASS.Class=' MATHGE50 (J) 305-61-2435 MATH650
A Fave student.cra(S) 422-11-2320 BIOL110

RES < pacpa)(A)

7% sQL: Part 1 (DML, Relational Algebra)

September 17, 2017 62

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL: Examples

« Get the number of tracks for an album
SELECT COUNT(*) AS num_tracks FROM track WHERE AlbumId=1;

— COUNT(*) = number of rows
— COUNT(field) = number of non-NULL values
— COUNT(DISTINCT field) = number of distinct values of a field

« Compute the total cost of an album
SELECT SUM(UnitPrice) AS total_cost FROM track WHERE AlbumId=1;

« Get the min/max/average track unit price overall
SELECT MIN(UnitPrice) AS min_price FROM track;
SELECT MAX(UnitPrice) AS max_price FROM track;
SELECT AVG(UnitPrice) AS avg_price FROM track;

SELECT MIN(UnitPrice) AS min_price, MAX(UnitPrice) AS max_price,
AVG(UnitPrice) AS avg _price FROM track;

)] SQL: Part 1 (DML, Relational Algebra)

s

September 17, 2017 63

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL: Grouping

The GROUP BY statement allows you to define subgroups for aggregate
functions. The GROUP BY attribute list should be a subset of SELECT
list.

SELECT [DISTINCT] <attribute list>
FROM <table list>

[WHERE <condition list>]

[GROUP BY <attribute list>]

[ORDER BY <attribute-order list>];

Example: track price stats by media type

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price,
MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg price

FROM track t INNER JOIN MediaType mt ON t.MediaTypeIld=mt.MediaTypeld

GROUP BY mt.Name

ORDER BY avg_price DESC, mt.Name ASC;

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Conceptually

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price,
MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg price

FROM track t INNER JOIN MediaType mt ON t.MediaTypeld=mt.MediaTypeld

GROUP BY mt.Name

ORDER BY avg_price DESC, mt.Name ASC;

SELECT *
FROM track t INNER JOIN MediaType mt ON t.MediaTypeld=mt.MediaTypeld
ORDER BY mt.Name ASC;

Trackld Name Albumld MediaTypeld Genreld Composer Milliseconds Bytes UnitPrice MediaTypeld Name
1|1 For Those About To Rock (We Salute You) | 1 1 1 Angus Young, Malcolm Young, Brian Johnson 343719 11170334 | 0.99 1 MPEG audio file
2 6 Put The Finger On You 1 1 1 Angus Young, Malcolm Young, Brian Johnson 205662 6713451 | 0.99 1 MPEG audio file
3 7 Let's Get It Up 1 1 1 Angus Young, Malcolm Young, Brian Johnson 233926 7636561 |0.99 1 MPEG audio file
4 2 Balls to the Wall 2 2 1 342562 5510424 | 0.99 2 Protected AAC audio file
5 3 Fast As a Shark 3 2 1 AL RS PRI S E SR A 230619 3990094 (099 |2 Protected AAC audio file
6 4 Restless and Wild 3 2 1 F.Baltes, R.A. Smith Diesel, S. Kaufman, U. 252051 4331779 (099 |2 Protected AAC audio file
7|5 Princess of the Dawn 3 2 1 Deaffy & R.A. Smith-Diesel 375418 6290521 |0.99 2 Protected AAC audio file

GROUP BY J

September 17, 2017 65

SQL: Part 1 (DML, Relational Algebra)

Northeastern University CS5200 — Database Management Systems -+ Fall 2017

Relational Algebra

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price,
MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg price

FROM track t INNER JOIN MediaType mt ON t.MediaTypeld=mt.MediaTypeld

GROUP BY mt.Name

ORDER BY avg_price DESC, mt.Name ASC;

J Pt (tTCLCk) l>qt.MediaTypeId:mt.MediaTypeId Pmit (Media'Type)

oL
A <—mt.Name l7¢m,t.NaTne,MIN t.UnitPrice, MAX t.UnitPrice,AVG t.UnitPrice (A)

R+ p(media_type,min_price,maa:_price,avg_price) (A>
RES <+ Tavg_price DESC,mt.Name(R)

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017

Derbinsky

66

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Grouped Aggregation (1)

BillingCity BillingState avg_total sum_total ct

1 Fort Worth T 6.80285714285714 47.62 7
» Chicago IL 6.23142B57142857 43.62 7
2 Salt Lake City uT 6.23142857142857 43.62 7
4 Madison Wi 6.08857142857143 42.62 7
g Orlando FL 5.66 39.62 7
g HRedmond WA 5.66 39.62 7
7 Cupertino CA 5.51714285714286 38.62 7
g Mountain View CA 5.51714285714286 77.24 14
g Tucson AZ 5.37428571428571 37.62 7
10 Boston MA 5.37428571428571 37.62 7
11 Reno NV 5.37428571428571 37.62 7
42 New York NY 5.37428571428571 3762 7

Get the average, sum, and number of all US invoices, grouped
by city and state. Order by average cost (greatest first), then
state (alphabetically), then city (alphabetically).

SELECT BillingCity, BillingState,
AVG(Total) AS avg_total, SUM(Total) AS sum_total, COUNT(*) AS ct
FROM invoice
WHERE BillingCountry="'USA'
GROUP BY BillingCity, BillingState
ORDER BY avg_total DESC, BillingState ASC, BillingCity ASC;

S 4 O BillingCountry='Us A’ (invoice)
A < BillingCity, BillingState -7 BillingCity, BillingState, AVG Total,SUM Total,COUNT(x)(S)
R« P(BillingCity, BillingState,avg_total,sum _total,ct) (A)

RES < Tavg_total DESC,BillingState,BillingCity(R)

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 67

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Grouped Aggregation (2)

MediaTyj pe

Invoiceld total
404 25.86

299 23.86
96 21.86
194 21.86
201 18.86
89 18.86
88 17.91
306 16.86
° 313 16.86
10 103 15.86

eeeeeee

@ N O U b N -

1 208 15.86
12 193 14.91
13 5 13.86
14 12 13.86
15 19 13.86

lllll L——{ SupportRepld

Using only the invoiceline table, compute the total cost of each
ord?r, sorted by total (greatest first), then invoice id (smallest
first).

SELECT InvoiceId, SUM(UnitPrice*Quantity) AS total
FROM invoiceline
GROUP BY Invoiceld
ORDER BY total DESC, InvoiceId ASC;
A < Invoiceld ngInvoiceId,SUM (UnitPricexQuantity) (invoiceline)
R« P(Invoiceld,total) (A)

RES + Ttotal DES’C’,InUoiceld(R)

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 68

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Grouped Aggregation (3)

Artist Album Track MediaType y
Artistld uml Trackid le— > MediaTypeld Trackld .) Name) Title num_sold
Name itle Name Name 1 430 | I'm Going Slightly Mad Greatest Hits || 2
rtist ‘:,:"::zp e B 2 2263 | Somebody To Love Greatest Hits | 2
Genreld | 3 2272 | We Are The Champions News Of The World 2
Composef Genr 4 2259 | You're My Best Friend Greatest Hits | 2
illiseconds Genreld
Bytes Nam, 5 419 | AKind Of Magic Greatest Hits II 1
UnitPrice 6 2274 | All Dead, All Dead News Of The World 1
InvoiceLin 7 2255 | Another One Bites The Dust Greatest Hits | 1
::plloy e :::Z:::;nem 8 2258 | Bicycle Race Greatest Hits | 1
LastName Customer Trackid — 9 2254 | Bohemian Rhapsody Greatest Hits | 1
DrsNome [oustomend — 10 426 | Breakthru Greatest Hits I 1
ReportsTo LastName 1 2257 | Fat Bottomed Girls Greatest Hits | 1
P Date Company e 12 2276 | Fight From The Inside News Of The World 1
Address City Customer 1d 13 2267 | Flash Greatest Hits | 1
C S I D:
S;'y,e c': oy o ;:;dzz 14 2277 | Get Down, Make Love News Of The World 1
Country PostalCode BillingCity 15 428 | Headlong Greatest Hits Il 1
PostalCode Phone BillingState T — -~ T =
Phone Fax BillingCountry
Fax Email BillingPostalCode
Email L——{ SupportRepld Total

Generate a ranked list of Queen’s best selling tracks. Display the track
id, track name, and album name, along with number of tracks sold,
sorted by tracks sold (greatest first), then by track name (alphabetical).

SELECT invoiceline.TrackId, track.Name, album.Title,
SUM(invoiceline.Quantity) AS num_sold

FROM ((invoiceline INNER JOIN track ON invoiceline.TrackId=track.TrackId)

INNER JOIN album ON track.AlbumId=album.AlbumId)

INNER JOIN artist ON album.ArtistId=artist.ArtistId

WHERE artist.Name='Queen’

GROUP BY invoiceline.TrackId

ORDER BY num_sold DESC, track.Name ASC;

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 69

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Grouped Aggregation (3-RA

Artist Album Track MediaType

Artistld Albumid Trackid le— > MediaTypeld Trackld Name Title num_sold
Name Title Name Name 1 430 | I'm Going Slightly Mad Greatest Hits || 2
Artistid Albumid 2 2263 | Somebody To Love Greatest Hits | 2
MediaTypeld —t
Genreld | 3 2272 | We Are The Champions News Of The World 2
Composer Genre . :
Playlist PlaylistTrack Milliseconds Genreld 4 2259 You.re My BeSt Fﬂend GreateSt HItS l z
Playlistid Playlistid Bytes Name 5 419 | AKind Of Magic Greatest Hits II 1
Trackid UnitPrice 6 2274 | All Dead, All Dead News Of The World 1
InvoiceLine 7 2255 | Another One Bites The Dust Greatest Hits | 1
e e Hovoicelineld | 8 2258 | Bicycle Race Greatest Hits | 1
LastName Customer Trackid — 9 2254 | Bohemian Rhapsody Greatest Hits | 1
DrsNome [oustomend — 10 426 | Breakthru Greatest Hits I 1
ReportsTo LastName 1 2257 | Fat Bottomed Girls Greatest Hits | 1
P Date Sompe. more 12 2276 | Fight From The Inside News Of The World 1
Address City Customerld 13 2267 | Flash Greatest Hits | 1
Ci S I D:
— P Slmengress 14 2277 | Get Down, Make Love News Of The World 1
Country PostalCode BillingCity 15 428 | Headlong Greatest Hits Il 1
PostalCode Phone BillingState e s -~ — =
Phone Fax BillingCountry
Fax Email BillingPostalCode
Email L——{ SupportRepld Total

Generate a ranked list of Queen’s best selling tracks. Display the track
id, track name, and album name, along with number of tracks sold,
sorted by tracks sold (greatest first), then by track name (alphabetical).

J1 < invoiceline Minvoiceline. TrackId=track.TrackId track
J2 < J1 XNirack. AlbumId=album. AlbumId album
J3 <+ J2 DXalbum. ArtistId=artist. ArtistId Qrtist
S Oartist. Name='Queen’ (JS)
A <invoiceline. Trackld gzinvoiceline.TTackId,track.Name,album.Title,SUM invoiceline.Quantity(S)
R+ P(TrackId,Name,Title,num_sold) (A)
RES + Tnum_sold DESC,Name(R)

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 70

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

SQL: HAVING

The HAVING statement allows you to place
constraint(s), similar to WHERE, that use aggregate
functions (separate by AND/OR)

« Same as SELECT condition in relational algebra,
but has efficiency conditions in DBMS

SELECT [DISTINCT] <attribute list>
FROM <table list>

WHERE <condition list>]

GROUP BY <attribute list>]
HAVING <condition list>]

ORDER BY <attribute-order list>];

@) sQL:Part 1 (DML, Relational Algebra)

September 17, 2017 71

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Aggregation (4)

::ilss:ld Alb:ml ::::m le— m::::vp:m Trackld Name Title num_sold
W itle Name Name 1 430 | I'm Going Slightly Mad Greatest Hits Il 2
st ‘:,:::::p 1| 2 2263 | Somebody To Love Greatest Hits | 2
Genreld — a 2272 | We Are The Champions News Of The World 2
Composef 8 4 2259 | You're My Best Friend Greatest Hits | 2
Bytes Nam

Employeeld |€—

omer
FirstName Customerl d
Title FirstName i
ReportsTo LastName
BirthDate Company Invoice
HireDate Address Invoiceld

State Country BillingAddress
Country PostalCode BillingCity
PostalCode Phone BillingState
Phone Fax BillingCountry
Fax Email BillingPostalCode
Email L supportRepld Total

Generate a ranked list of Queen’s best selling tracks. Display the track id, track
name, and album name, along with number of tracks sold, sorted by tracks
sold (greatest first), then by track name (alphabetical). Only show those tracks

that have sold at least twice.
SELECT invoiceline.TrackId, track.Name, album.Title,

SUM(invoiceline.Quantity) AS num_sold
FROM ((invoiceline INNER JOIN track ON invoiceline.TrackId=track.TrackId)
INNER JOIN album ON track.AlbumId=album.AlbumId)
INNER JOIN artist ON album.ArtistId=artist.ArtistId
WHERE artist.Name='Queen’
GROUP BY invoiceline.TrackId
HAVING SUM(invoiceline.Quantity)>=2
ORDER BY num_sold DESC, track.Name ASC;

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 72

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Query in a Query

A feature of SQL is its composability — the
result(s) of one query, which is a set of
rows/columns, can be used by another

* Termed inner/nested query or subquery

Most common locations
* SELECT (returns a value for an attribute)

* FROM (becomes a “table” to query/join)
 WHERE (serves as part of a constraint)

(€)) saL:Part 1 (DML, Relational Algebra)

September 17, 2017 73

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Notes about Subqueries

* Tip: when designing subqueries, work inside out -

come up with each query separately, then piece
them together

— Helps with debugging

* A correlated subquery is an inner query that
references a value from an outer query

— The inner query will be run once for every tuple of the
outer query (i.e. slow!)

 Don’t use ORDER BY in inner queries (some
DBMSs don’t allow, typically wasteful anyhow)

Northeastern University CS5200 — Database Management Systems -

Example: WHERE

Fall 2017 - Derbinsky

Artist Album Track MediaType - — —

Artistid Albumlid Trackld le— MediaTypeld Trackld Name Albumid MediaTypeld Genreld Composer Milliseconds Bytes UnitPrice

Name Title Name Name 1 38 | All | Really Want 6 1 1 | Alanis Morissette & Glenn Ballard 284891 9375567 0.99

At g1 2 39 You Oughta Know 6| 1] 1 Alanis Morissette & Glenn Ballard 249234 8196916 099

Genreld — a 40 | Perfect 6 1 1 | Alanis Morissette & Glenn Ballard 188133 6145404 0.99
Com| r Gen!

Playlist PlaylistTrack Ml s 4 41 | Hand In My Pocket 6 1 1| Alanis Morissette & Glenn Ballard 221570 7224246 0.99

Playlistid Playlistid Bytes Name 5 42 | Right Through You 6 1 1| Alanis Morissette & Glenn Ballard 176117 5793082 0.99
tnitPrice 6 43 | Forgiven 6 1 1 | Alanis Morissette & Glenn Ballard 300355 | 9753256 0.99
InvoiceLine 7 44 | You Learn 6 1 1| Alanis Morissette & Glenn Ballard 239699 | 7824837 | 0.99

Employee [nvoicelineld | 8 45 | Head Over Feet 6 1 1| Alanis Morissette & Glenn Ballard 267493 8758008 0.99

Employeeld |€— Invoiceld | | . . - X |

L Customer Trackid] 9 46 Mary Jane 6 1 1 | Alanis Morissette & Glenn Ballard 280607 9163588 0.99

firstName | Customerld _} Hnitprics 10 47 | Tronic 6 1 1 | Alanis Morissette & Glenn Ballard 229825 | 7598866 0.99

Title FirstName Quantity _ | | — — — - — S—

ReportsTo LastName 1 48 | Not The Doctor 6 1 1| Alanis Morissette & Glenn Ballard 227631 7604601 0.99

SirthDate Company Invoice 12 49 | Wake Up 6 1 1 | Alanis Morissette & Glenn Ballard 293485 9703359 0.99

HireDate Address Invoiceld _ ! { — - NTRRET T ——— ———

Address City Customerld 13 50 | You Oughta Know (Alternate) 6 1 1| Alanis Morissette & Glenn Ballard 491885 16008629 0.99

City State InvoiceDate

State Country BillingAddress

Country PostalCode BillingCity

PostalCode Phone BillingState

Phone Fax BillingCountry

Fax Email BillingPostalCode

Email L SupportRepld Total

Get all track information for the aloum Jagged

Little Pill (do not use a join)

SELECT t.*
FROM track t
WHERE t.AlbumId = (
SELECT a.AlbumId
FROM album a
WHERE a.Title='Jagged Little Pill’

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 5

Notes
The subquery needs to

return a single value for
the = to make sense
Not correlated!

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

How the Query Works Conceptually

SELECT t.*
FROM track t
WHERE t.AlbumId = (

SELECT a.AlbumId Albumid
FROM album a } Inner Query 16
WHERE a.Title='Jagged Little Pill"’

)5

SELECT t.*

FROM track t
WHERE t.AlbumlId = 6;

INNER + 7-‘-zﬁllbumld(O-CL.Title:’Jagged Lattle Pall’ (pa(album)>)
OUTER < 0t Albumid=INNER(pt(track))

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 76

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Notes about Subqueries and WHERE

For most operators, the subquery will need to return
a single value

Other operators:
« [NOT] IN = query returns a single column of

options

« [NOT] EXISTS = checks if query returns at least a
single row

e <Op> ALL = true if <op> returns true for all results
(single field)

« <0p> ANY/SOME = true if <op> returns true for any
result (single field)

{C)) sQL:Part 1 (DML, Relational Algebra)

September 17, 2017 77

Northeastern University CS5200 — Database Management Systems - Fall 2017 - Derbinsky

Nesting Example: WHERE

:::::,d :::::m ::::,d le—, :::::::VP:M Trackid Name Albumid MediaTypeld Genreld Composer Milliseconds Bytes UnitPrice
W Title Name ’_“L“Name 1 419 | AKind Of Magic 36 1 1 | Roger Taylor 262608 | 8689618 0.99
Artistid :;I:::::peld L 2 420 | Under Pressure 36 1 1| Queen & David Bowie 236617 | 7739042 0.99
Genreld 1 a 421 Radio GAGA 36 1 1| Roger Taylor 343745 11358573 | 0.99
Composer Genre 4 422 [Want It All 36 1 1| Queen 241684 7876564 0.99
::'::::Id PlavlistTrack :;'l:s:m"ds z:::ld 5 423 | | Want To Break Free 36 1 1| John Deacon 259108 | 8552861 | 0.99|
UnitPrice 6 424 | Innuendo 36 1 1| Queen 387761 12664591 0.99
\nvoiceLine 7 425]It's AHard Life 36 1 1| Freddie Mercury 249417 8112242 0.99
Employee InvoiceLineld 8 426 | Breakthru 36 1 1| Queen 249234 8150479 0.99
[%& S 'T"r‘;:z:"‘] 9 427 | Who Wants To Live Forever 36 1 1 | Brian May 297691 9577577 0.99
FirstName Customerid UnitPrice 10 428 | Headlong 36 1 1| Queen 273057 8921404 0.99 |
Title FirstName Quantity 11 429 | The Miracle 36 1 1| Queen 294974 | 9671923 0.99
ReportsTo LastName .
oot Company Invoice 12 430 | I'm Going Slightly Mad 36 1 1 Queen 248032 8192339 0.99
HireDate Address Invoiceld 13 431 | The Invisible Man 36 1 1 Queen 238994 7920353 0.99
:i‘:j'e“ o Sostomentd 14 432 Hammer To Fall 36 1 1| Brian May 220316 | 7255404 0.99
State Country BillingAddress 15 433 | Friends Will Be Friends 36 1 1| Freddie Mercury & John Deacon 248920 | 8114582 | 0.99
gz::gm ::::;C""E :::::sg:;e 16 434 The Show Must Go On 36 1 1 Queen 263784 | 8526760 | 0.99
Phone Fax [BillingCountry | 17 435 | One Vision 36 1 1| Queen 242599 7936928 0.99
Fax Email BillingPostalCode 18 2254 Bohemian Rhapsody 185 1 1 | Mercury, Freddie 358948 | 11619868 0.99
Emai 1 SupportRepld Jotal 19 2255 | Another One Bites The Dust 185 1 1| Deacon, John 216946 | 7172355 0.99

Get all track information for the artist Queen (do not use a join)

SELECT t.*
FROM track t
WHERE t.AlbumId IN (
SELECT alb.AlbumId
FROM album alb
WHERE alb.ArtistId = (
SELECT art.ArtistId
FROM artist art 1. Not correlated!

WHERE art.Name='Queen’

Notes

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

How the Query Works Conceptually

SELECT t.* SELECT t.*
FROM track t FROM track t
WHERE t.AlbumId IN (WHERE t.AlbumId IN (
SELECT alb.AlbumId SELECT alb.AlbumId
FROM album alb FROM album alb
WHERE alb.ArtistId = (WHERE alb.ArtistId = 51
SELECT art.ArtistId)5
FROM artist art
WHERE art.Name='Queen’ l l
)
)5 Albumid
Artistld
1 36
1 51
2 185
3 186
SELECT t.* IN2 + Wart.ArtistId(Uart.Name:’Queen’ (Part(aﬂ“tiSt)))
FROM track t
WHERE t.AlbumId IN (36, 185, 186); IN1 <_7-‘-Cle.Albu7nId(O-alb.ATtistId:IN2(,Oalb(albu"n)))

OUT < ot atbumid iN 1N2(pe(track))

)] SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 79

Northeastern University CS5200 — Database Management Systems

Example: SELECT

MediaType

< MediaTypeld
Name
1
T 2
Genre
Genreld
Name 3
4
el
oyee i
Employeeld |€— Invoiceld 5
L Custome! Trackld [—
FirstName Customerl Id UnitPrice
Title FirstName Quantity 6
ReportsTo LastName
BirthDate Company Invoice 7
HireDate Address Invoiceld
ddress City Customerl, d
City Sta 8
State Country il ess
Country PostalCod: i 9
PostalCode Ph
Ph F; ingCol
Fax Email BillingPostalCode
Email L supportRepld Total

Fall 2017

artist_name

Santana

Derbinsky

album_ct

Santana Feat. Dave Matthews

Santana Feat. Eagle-Eye Cherry

Santana Feat. Eric Clapton

Santana Feat. Everlast

Santana Feat. Lauryn Hill & Cee-Lo

Santana Feat. Mana

Santana Feat. Rob Thomas

Santana Feat. The Project G&B

o/ ol o o|lo|l]o ol o

For each artist starting with Santana, get the number of albums, sorted

by count (greatest first), then artist (alphabetical)

SELECT art.Name AS artist_name,

(
SELECT COUNT(*) Notes

FROM album alb 1. The subquery needs to
WHERE alb.ArtistId=art.ArtistId return a single value for

) AS album_ct
FROM artist art

each tuple generated

WHERE art.Name LIKE 'Santana%’ 2. Correlated subquery!

ORDER BY album_ct DESC, art.Name;

SQL: Part 1 (DML, Relational Algebra)

37

September 17, 2017 80

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

How the Query Works Conceptually

SELECT art.Name AS artist_name, Correlated - one query per row to

(ill i |
SELECT COUNT(*) fill in album_ct column!

FROM album alb
WHERE alb.ArtistId=art.ArtistId
) AS album_ct
FROM artist art

SELECT COUNT(*)
FROM album alb
WHERE alb.ArtistId=59;

WHERE art.Name LIKE 'Santana%' 60;
ORDER BY album_ct DESC, art.Name;
Artistld Name artist_name album_ct

1 59 Santana 1 Santana 3

2 60 Santana Feat. Dave Matthews 2 Santana Feat. Dave Matthews 0

3 61 Santana Feat. Everlast 3 Santana Feat. Eagle-Eye Cherry 0
S E L ECT * 4 62 Santana Feat. Rob Thomas 4 Santana Feat. Eric Clapton 0
FROM artist art 5 63 Santana Feat. Lauryn Hill & Cee-Lo 5 Santana Feat. Everlast 0
WHERE art.Name LIKE l Santa na% ' 5 6 64 Santana Feat. The Project G&B 6 Santana Feat. Lauryn Hill & Cee-Lo | 0

7 65 Santana Feat. Mana 7 Santana Feat. Mana 0

8 66 Santana Feat. Eagle-Eye Cherry 8 Santana Feat. Rob Thomas 0

9 67 Santana Feat. Eric Clapton 9 Santana Feat. The Project G&B 0

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 81

Northeastern University CS5200 — Database Management Systems -+ Fall 2017

[Better] Example: FROM

Artist Album Track MediaType artist_name

Artistid uml
Name itle
rtist

Trackld le— MediaTypeld

Name Name

Albornid 1 Santana
MediaTypeld -

Genreld — 2 Santana Feat. Dave Matthews
Composer Genre
Milliseconds Genreld
Bytes Name 3 Santana Feat. Eagle-Eye Cherry
UnitPrice
4 Santana Feat. Eric Clapton
InvoiceLin
Employee | Invoicel Lineld
Employeeld |€— Invoice| 1d 5 Santana Feat. Everlast
LastName Customer Trackld —
FirstName Customerls d UnitPrice .
[Title MHirstName] Quantity 6 Santana Feat. Lauryn Hill & Cee-Lo
ReportsTo LastName
BirthDate Company Invoice 7 Santana Feat. Mana
HireDate Address Invoiceld
Addre City Customer| Id
City State Invoicel Date 8 Santana Feat. Rob Thomas
State Country BillingAddress
Country PostalCode BillingCity 9 Santana Feat. The Project G&B
PostalCode Phone BillingState
Phone Fax BillingCountry
Fax Email BillingPostalCode
Email L—— SupportRepld Total

Derbinsky

album_ct

3
0
0
0
0
0
0
0
0

For each artist starting with Santana, get the number of albums, sorted

by count (greatest first), then artist (alphabetical)

SELECT artist_name, COUNT(ql.AlbumId) AS album_ct

FROM

(
SELECT art.ArtistId AS artist_id, art.Name AS artist_name, alb.AlbumId
FROM artist art LEFT JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE art.Name LIKE 'Santana’%’

) q1

GROUP BY artist_id

ORDER BY album_ct DESC, artist_name;

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017

82

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

How the Query Works Conceptually

SELECT artist_name, COUNT(ql.AlbumId) AS album ct

FROM
(
SELECT art.ArtistId AS artist_id, art.Name AS artist_name, alb.AlbumId
FROM artist art LEFT JOIN album alb ON art.ArtistId=alb.ArtistId ql
WHERE art.Name LIKE ‘santanaz’ "~
) a1 I
GROUP BY artist_id PP P o
ORDER BY album_ct DESC, artist_name; LD Sean e

8 64 Santana Feat. The Project G&B
9 65 Santana Feat. Mana
10 66 Santana Feat. Eagle-Eye Cherry

1 67 Santana Feat. Eric Clapton

artist_name album_ct
Santana
Santana Feat. Dave Matthews

Santana Feat. Eagle-Eye Cherry

Santana Feat. Eric Clapton

SELECT artist_name, COUNT(ql.AlbumId) AS album_ct
FROM q1

GROUP BY artist_id

ORDER BY album_ct DESC, artist_name;

Santana Feat. Lauryn Hill & Cee-Lo
Santana Feat. Mana

3

0

0

0

Santana Feat. Everlast 0
0

0

Santana Feat. Rob Thomas 0
0

© (-] ~ o o S w n -

Santana Feat. The Project G&B

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 83

Northeastern University CS5200 — Database Management Systems -+ Fall 2017

+ Derbinsky

Notes about Subqueries and FROM

* When using one or more subqgueries in the
FROM clause, remember two important items

— The subquery must be enclosed within
parentheses

— The subquery must have a name (e.g. q1 in the

previous example), which is indicated just after
the close parenthesis

* The name can be used to refer to columns in
the subquery via the dot notation (e.g.
subgueryname.columnname) — this is
required if the column name is not unique

5) saL: Part 1 (DML, Relational Algebra)

mber 17, 2017 84

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Nesting Example: FROM

Artist Album MediaType
Artistid uml; Trackid MediaTypeld H
[e . s i min_q max_g avg_q num_customers
rtist! Albumid
MediaTypeld -
Genreld —t
Comaese 1 36 38 37.9661016949153 | 59
Milliseconds Genreld .
Bytes Name
UnitPrice
InvoiceLin
Emplovee [Invoice Lineld
Employeeld |€— Invoice!]
LastName | | Customer Trackld —
FirstName Customer| Id UnitPrice
Title FirstName Quantity
ReportsTo LastName
BirthDate Company Invoice
HireDate Address Invoiceld
Address City Customerld
City State Invoicel Date
State Country BillingAddress
Country PostalCode BillingCity
PostalCode Phone BillingState
Phone Fax BillingCountry
Fax Email BillingPostalCode
Email L supportRepld Total

Find the minimum, maximum, and average number of tracks ordered per customer (across all invoices).
Also include the total number of customers.

SELECT MIN(q2.sum_q) AS min_q, MAX(q2.sum_q) AS max_qg, AVG(g2.sum_q) AS avg q,
COUNT(*) AS num_customers
FROM
(SELECT gl1.CustomerId, SUM(Quantity) AS sum_q
FROM
(SELECT i.CustomerId, il.Quantity
FROM invoice i NATURAL JOIN invoiceline il

) q1
GROUP BY gl.CustomerId

) 92;

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 85

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

How the Query Works Conceptually

SELECT MIN(q2.sum_q) AS min_q, MAX(q2.sum_q) AS max_q, AVG(gq2.sum_q) AS avg q,
COUNT(*) AS num_customers

FROM
(SELECT g1.CustomerId, SUM(Quantity) AS sum_q
FROM
(SELECT i.CustomerId, il.Quantity
FROM invoice i NATURAL JOIN invoiceline il
) q1
GROUP BY ¢gl1.Customerld
) 492;
g2 ql
ql.Customerld sum_q Customerld Quantity
11 38 1 > 1
2 2 38 2 2 1
3 3 38]
3 4 1
4 4 38
4 4 1
5 5 38
5 4 1
min_q max_q avg_q num_customers & 6 38
77 38 6 |4 1
1 36 38 37.9661016949153 | 59
8 8 38 _ 7 8 1

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 86

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Subquery (1)

Artist Album Track MediaType

. d Ao Trackid e MediaTyneld FirstName LastName total_spent
rtistl umi rackl edia e o
Name Title Name Name 1 Helena Holy 49.62
Artistld Albumld > Richard Cunningham 47.62
MediaTypeld - . .
Genreld T 3 Luis Rojas 46.62
Composer Genre Ladislav Kovécs 45.62
4
Playlist PlaylistTrack Milliseconds Genreld 5 ¥
Playlistid Playlistid Bytes Name s Hugh O'Reilly 45.62
UnitPrice Julia Barnett 4362
6
InvoiceLine 7 Frank Ralston 43.62
Employee InvoiceLineld 8 Fynn Zimmermann 43.62
Employeeld |€— Invoice! \d .
MastName | Customer Trackid L g Astrid Gruber 4262
FirstName Customerld UnitPrice 40 Victor Stevens 42,62
Title FirstName Quantity N = =T
ReportsTo Lastiame 11 Terhi Hamalainen 41.62
BirthDate Company Invoice 12 Isabelle Mercier 40.62
HireDate Address Invoiceld iy - z
‘Address City MCustomerd | 13 FrantiSek Wichterlova 40.62
City State InvoiceDate 14 Johannes Van der Berg 40.62
State Country BillingAddress
Country PostalCode BillingCity
PostalCode Phone BillingState
Phone Fax BillingCountry
Fax Email BillingPostalCode
Email L—— SupportRepld Total

Find the highest spending customers: get a ranked list of customers (first name, last name) who have spent
at least $40, sorted by amount spent (greatest first), then last name, then first name

SELECT * FROM (
SELECT c.FirstName, c.LastName, (
SELECT SUM(i.Total)
FROM invoice i
WHERE c.CustomerId=i.CustomerId
) AS total_spent
FROM customer c) q1l
WHERE gl.total_spent>=40
ORDER BY ql.total _spent DESC, ql.LastName ASC, ql.FirstName ASC;

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 87

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Subquery (2)

P Ao T e o Mesatienid g_name g.ct g_percentage

e L it Aborid e 1 Rock 1297 | 37.0254067941764
MediaTypeld -
Genreld —
Composer Senve_ 2 Latin 579 | 16.5286886945475
Bytes Nam
3 Metal 374 | 10.6765629460462
InvoiceLin

Emplo: Invoice! Lineld

[%e rrrrrrrrr rrr— 4 Alternative & Punk | 332 | 0.4775906365972

FirstName Customerls d UnitPrice

Coatiame [“ 5 Jazz 130 | 3.71110476734228

BirthDate Company Invoice

e 6 TV Shows 93 | 2.65486725663717

S;:;e Ct:umrv Br::ll::;id:!r‘:ss

bestaicode e Slirsine 7 Blues 81 | 2.31230373965173

Phone Fax BillingCountry

i | eonpornepia S 8 Classical 74 | 2.11247502141022

Create a report of the distribution of tracks into genres. The result set should list each
genre by name, the number of tracks of that genre, and the percentage of overall tracks
for that genre. The rows should be sorted by the percentage (greatest first), then genre
name (alphabetically).

SELECT x.Name AS g name, x.g ct AS g ct, (100.0 * g ct / ct) AS g _percentage
FROM (SELECT *, (SELECT COUNT(*) FROM track tl1 WHERE tl1.GenreId=g.Genreld) AS g ct,
(SELECT COUNT(*) FROM track t2) AS ct
FROM genre g) X
ORDER BY g_percentage DESC, g name ASC;

SQL: Part 1 (DML, Relational Algebra)

September 17, 2017 88

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Inserting Rows

* |nsert all attributes, in same order as table
INSERT INTO table_name
VALUES (a, b, .. n);

* Insert a subset of attributes (not assigned = NULL)
INSERT INTO table name (al, a2, .. an)
VALUES (a, b, .. n)[, (a2, b2, .. n2), ..1;

* Insert via query
INSERT INTO table name (al, a2, .. an)
SELECT al, a2, .. an FROM ..

(€)) saL:Part 1 (DML, Relational Algebra)

September 17, 2017 89

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Updating Rows

General syntax

UPDATE table name

SET <attribute=value list>
[WHERE <condition list>];

» Attribute=value is comma-separated

« Condition list may result in more than one
rows being updated via a single statement

{C)) sQL:Part 1 (DML, Relational Algebra)

September 17, 2017 90

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Deleting Rows

General syntax
DELETE FROM table name
[IWHERE <condition list>];

« Condition list may result in more than one
rows being deleted via a single statement

* No condition = clear table (truncate)

{C)) sQL:Part 1 (DML, Relational Algebra)

September 17, 2017 91

Northeastern University CS5200 - Database Management Systems - Fall 2017 - Derbinsky

Summary

* You have now learned most of the DML components of SQL
— SELECT: get stuff out
— INSERT: add row(s)
— UPDATE: change existing row(s)
— DELETE: remove row(s)

« While using SELECT you learned about attribute
ordering/renaming (AS), row filtering (WHERE) and sorting
(ORDER BY), table joining (FROM + JOIN/ON), grouped
aggregation (GROUP BY + FN + HAVING), set operations on
multiple queries (e.g. UNION), and subqueries (SELECT within
SELECT)

* You have also learned the basic relational algebra operators
associated with SELECT (o,m,p,7,0,~,7)

@) SQL:Part 1 (DML, Relational Algebra)

September 17, 2017 92

