
172 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

Search-Based Procedural Content Generation:
A Taxonomy and Survey

Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron Browne

Abstract—The focus of this survey is on research in applying
evolutionary and other metaheuristic search algorithms to auto-
matically generating content for games, both digital and nondigital
(such as board games). The term search-based procedural content
generation is proposed as the name for this emerging field, which
at present is growing quickly. A taxonomy for procedural content
generation is devised, centering on what kind of content is gener-
ated, how the content is represented and how the quality/fitness of
the content is evaluated; search-based procedural content genera-
tion in particular is situated within this taxonomy. This article also
contains a survey of all published papers known to the authors in
which game content is generated through search or optimisation,
and ends with an overview of important open research problems.

Index Terms—Computer graphics, design automation, evolu-
tionary computation, genetic algorithms.

I. INTRODUCTION

T HIS paper introduces the field of search-based procedural
content generation, in which evolutionary and other sto-

chastic and metaheuristic search techniques generate content for
games. As the demand from players for ever more content rises,
the video game industry faces the prospect of continually rising
costs to pay for the artists and programmers to supply it. In this
context a novel application for AI has opened up that focuses
more on the creative and artistic side of game design [1]–[6]
than on the tactical and strategic considerations common to NPC
AI [7]–[10]. Algorithms that can produce desirable content on
their own can potentially save significant expense. Moreover,
the possibilities in this area are largely uncharted; the breadth of
content potentially affected is only beginning to be understood,
raising the question of whether computers will ultimately yield
designs that compete with human imagination.
This review examines the first steps that researchers have

taken towards addressing this question as this nascent field be-
gins to coalesce. The aim is to investigate what can and cannot

Manuscript received September 14, 2010; revised December 08, 2010;
accepted March 18, 2011. Date of publication April 29, 2011; date of current
version September 14, 2011. This work was supported in part by the Danish
Research Agency, Ministry of Science, Technology and Innovation; project
AGameComIn (number 274-09-0083).
J. Togelius and G. N. Yannakakis are with the IT University of Copenhagen,

2300 Copenhagen, Denmark (e-mail: julian@togelius.com; yannakakis@itu.
dk).
K. O. Stanley is with the University of Central Florida, Orlando, FL 32816

USA (e-mail: kstanley@eecs.ucf.edu).
C. Browne is with the Imperial College London, London, SW7 2AZ, U.K.

(e-mail: cameron.browne@btinternet.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2011.2148116

be accomplished with such techniques and to outline some of
the main research challenges in the field. Distinctions will be
introduced between different approaches, and a comprehensive
survey of published examples will be discussed and classified
according to these distinctions. First, the overarching area of
procedural content generation is introduced.
Procedural content generation (PCG) refers to creating game

content automatically, through algorithmic means. In this paper,
the term game content refers to all aspects of the game that af-
fect gameplay other than nonplayer character (NPC) behavior
and the game engine itself. This set includes such aspects as
terrain, maps, levels, stories, dialogue, quests, characters, rule-
sets, dynamics, and weapons. The survey explicitly excludes
the most common application of search and optimization tech-
niques in academic games research, namely NPC AI, because
the work in that area is already well-documented in the litera-
ture [7]–[10] while other areas of content are significantly less
publicized. The review also puts less weight on decorative as-
sets such as lighting, textures, and sound effects, insofar as they
do not directly affect gameplay. (It should be noted that there
is a rich literature on procedural generation of textures [11],
e.g., for use as ornamentation in games [12], which will not be
covered here.) Typically, PCG algorithms create a specific con-
tent instance from a short description (parameterisation or seed),
which is in some way much smaller than the “expanded” con-
tent instance. The generation process is often, but not always,
partly random.
There are several reasons for game developers to be inter-

ested in procedural content generation. The first is memory con-
sumption—procedurally represented content can typically be
compressed by keeping it “unexpanded” until needed. A good
example is the classic space trading and adventure game Elite
(Acornsoft 1984), which managed to keep hundreds of star sys-
tems in the few tens of kilobytes of memory available on the
hardware of the day by representing each planet as just a few
numbers; in expanded form, the planets had names, populations,
prices of commodities, etc.
Another reason for using PCG is the prohibitive expense of

manually creating game content. Many current generation AAA
titles employ software such as SpeedTree (Interactive Data Visu-
alization, Inc.) to create whole areas of vegetation based on just
a few parameters, saving precious development resources while
allowing large, open game worlds. This argument becomes ever
more important as expectations about the amount and level of
detail of game content continue to increase in pace with game
hardware improvements.
A third argument for PCG is that it might allow the emer-

gence of completely new types of games, with game mechanics

1943-068X/$26.00 © 2011 IEEE

TOGELIUS et al.: SEARCH-BASED PROCEDURAL CONTENT GENERATION: A TAXONOMY AND SURVEY 173

built around content generation. If new content can be gener-
ated with sufficient variety in real time then it may become pos-
sible to create truly endless games. Further, if this new content
is created according to specific criteria, such as its suitability
for the playing style of a particular player (or group/commu-
nity of players) or based on particular types of player experi-
ence (challenge, novelty, etc.), it may become possible to create
games with close to infinite replay value. Imagine a game that
never ends—wherever you go, whatever you do, there is always
something new to explore, and this new content is consistently
novel while at the same time tuned to your playing style and of-
fering the type of challenges you want. Persistent-world games
in which players demand a continual stream of new content in
particular can benefit from such a capability. While PCG tech-
nology is not yet impacting commercial games in this way, this
vision motivates several researchers within search-based PCG,
as discussed in this article.
Finally, PCG can augment our limited, human imagination.

Not every designer is a genius, at least not all the time, and a cer-
tain amount of sameness might be expected. Offline algorithms
might create new rulesets, levels, narratives, etc., which can then
inspire human designers and form the basis of their own cre-
ations. This potential also motivates several search-based PCG
researchers, as discussed in this paper.

II. DISSECTING PROCEDURAL CONTENT GENERATION

While PCG in different forms has been a feature of various
games for a long time, there has not been an academic commu-
nity devoted to its study. This situation is now changing with
the recent establishment of a mailing list,1 an IEEE CIS Task
Force,2 a workshop,3 and a wiki4 on the topic. However, there is
still no textbook on PCG, or even an overview paper offering a
basic taxonomy of approaches. To fill this gap, this section aims
to draw some distinctions. Most of these distinctions are not bi-
nary, but rather a continuum wherein any particular example of
PCG can be placed closer to one or the other extreme. Note that
these distinctions are drawn with the main purpose of clarifying
the role of search-based PCG; of course other distinctions will
be drawn in the future as the field matures, and perhaps the cur-
rent distinctions will need to be redrawn. More distinctions are
clearly needed to fully characterize, e.g., PCG approaches that
are not search-based. Still, the taxonomy herein should be useful
for analyzing many PCG examples in the literature, as well as
published games.

A. Online Versus Offline

The first distinction is whether the content generation is per-
formed online during the runtime of the game, or offline during
game development. An example of the former is when the player
enters a door to a building and the game instantly generates the
interior of the building, which was not there before; in the latter
case an algorithm suggests interior layouts that are then edited

1http://groups.google.com/proceduralcontent
2http://game.itu.dk/pcg/
3http://pcgames.fdg2010.org/
4http://pcg.wikidot.com

and perfected by a human designer before the game is shipped.
Intermediate cases are possible, wherein an algorithm running
on, for example, a real-time strategy (RTS) server suggests new
maps to a group of players daily based on logs of their recent
playing styles. Online PCG places two or three main require-
ments on the algorithm: that it is very fast, that it has a pre-
dictable runtime and (depending on the context) that its results
are of a predictable quality.

B. Necessary Versus Optional Content

A further distinction relating to the generated content is
whether that content is necessary or optional. Necessary con-
tent is required by the players to progress in the game—e.g.,
dungeons that need to be traversed, monsters that need to be
slain, crucial game rules, and so on—whereas optional content
is that which the player can choose to avoid, such as avail-
able weapons or houses that can be entered or ignored. The
difference here is that necessary content always needs to be
correct; it is not acceptable to generate an intractable dungeon,
unplayable ruleset or unbeatable monster if such aberrations
makes it impossible for the player to progress. It is not even
acceptable to generate content whose difficulty is wildly out of
step with the rest of the game. On the other hand, one can allow
an algorithm that sometimes generates unusable weapons and
unreasonable floor layouts if the player can choose to drop the
weapon and pick another one or exit a strange building and go
somewhere else instead.
Note that it depends significantly on the game design and the

game fiction whether content is categorized as necessary or op-
tional, and to what extent optional content is allowed to “fail.”
The first-person shooter Borderlands (Gearbox Software 2009)
has randomly generated weapons, many of which are not useful,
yet exploring these items is a core part of the gameplay and
consistent with the game fiction. On the other hand, a single
poorly designed and apparently “artificial” plant or building
might break the suspension of disbelief in a game with a strong
focus on visual realism such as Call of Duty 4: Modern Warfare
(InfinityWard 2007). Also note that some types of content might
be optional in one class of games, and necessary in another (see,
e.g., optional dungeons). Therefore, the analysis of what content
is optional should be done on a game-for-game basis.

C. Random Seeds Versus Parameter Vectors

Another distinction concerning the generation algorithm it-
self is to what extent it can be parameterised. All PCG algo-
rithms create “expanded” content of some sort based on a more
compact representation. At one extreme, the algorithm might
simply take a seed to its random number generator as input;
at another extreme, the algorithm might take as input a mul-
tidimensional vector of real-valued parameters that specify the
properties of the content it generates. For example, a dungeon
generator might be called with parameters specifying such prop-
erties as the number of rooms, branching factor of corridors,
clustering of item locations, etc. Another name for the random
seed-parameter vector continuum is the number of degrees of
control.

174 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

D. Stochastic Versus Deterministic Generation

A distinction only partly orthogonal to those outlined so far
concerns the amount of randomness in content generation. The
right amount of variation in outcome between different runs of
an algorithm with identical parameters is a design question. It is
possible to conceive of deterministic generation algorithms that
always produce the same content given the same parameters, but
many algorithms (e.g., dungeon-generation algorithms in rogue-
like games) do not. (Note that the random number generator
seed is not considered a parameter here; that would imply that
all algorithms are deterministic.)
Completely deterministic PCG algorithms can be seen as a

form of data compression. A good example of this use of PCG
techniques is the first-person shooter .kkrieger (.theprodukkt
2004), which manages to squeeze all of its textures, objects,
music and levels together with its game engine in 96 kb of
storage space. Another good example is Elite, discussed above.

E. Constructive Versus Generate-and-Test

A final distinction is between algorithms that can be called
constructive and those that can be described as generate-and-
test. A constructive algorithm generates the content once, and
is done with it; however, it needs to make sure that the con-
tent is correct or at least “good enough” while it is being con-
structed. This can be done through only performing operations,
or sequences of operations, that are guaranteed to never produce
broken content. An example of this approach is the use of frac-
tals to generate terrains [13].
A generate-and-test algorithm incorporates both a generate

and a test mechanism. After a candidate content instance is gen-
erated, it is tested according to some criteria (e.g., Is there a path
between the entrance and exit of the dungeon, or does the tree
have proportions within a certain range?). If the test fails, all or
some of the candidate content is discarded and regenerated, and
this process continues until the content is good enough.
TheMarkov chain algorithm is a typical constructive method.

In this approach, content is generated on-the-fly according to
observed frequency distributions in source material [14]. This
method has generated novel but recognizable game names [3],
natural language conversations, poetry, jazz improvisation [15],
and content in a variety of other creative domains. Similarly,
generate-and-test methods such as evolutionary algorithms are
widely used for PCG in nongame domains, for example in the
generation of procedural art; the evaluation function for this
very subjective content may be a human observer who speci-
fies which individuals survive each generation [16], [17] or a
fully automated process using image processing techniques to
compare and judge examples [18]. Although PCG has been suc-
cessfully applied to a range of creative domains, we shall focus
on its application to games in this survey.

III. SEARCH-BASED PROCEDURAL CONTENT GENERATION

Search-based procedural content generation is a special case
of the generate-and-test approach to PCG, with the following
qualifications.
• The test function does not simply accept or reject the can-
didate content, but grades it using one or a vector of real

numbers. Such a test function is variously called a fitness,
evaluation, and utility function; here, we will use “evalu-
ation function” and call the number or vector it assigns to
the content the fitness or simply the value of the content.

• Generating new candidate content is contingent upon the
fitness value assigned to previously evaluated content in-
stances; in this way the aim is to produce new content with
higher value.

While most examples in this article rely on evolutionary
algorithms, we chose the term “search-based” rather than
“evolutionary” for several reasons. One is to avoid excluding
other common metaheuristics, such as simulated annealing
[19] and particle swarm optimization [20], or simple stochastic
local search. Our definition of “search-based” explicitly allows
all forms of heuristic and stochastic search/optimisation algo-
rithms. (Some cases of exact search, exhaustive search, and
derivative-based optimization might qualify as well, though in
most cases the content evaluation function is not differentiable
and the content space too big to be exhaustively searched.)
Another reason is to avoid some connotations of the word “evo-
lutionary” in the belief that search-based is more value-neutral.
Finally, the term search-based for a similar range of techniques
is established within search-based software engineering [21],
[22]. The over-representation of evolutionary algorithms in this
paper is simply a reflection of what papers have been published
in the field.
Almost all of the examples in Section IV use some form of

evolutionary algorithm as the main search mechanism, as evo-
lutionary computation has so far been the method of choice
among search-based PCG practitioners. In an evolutionary al-
gorithm, a population of candidate content instances are held
in memory. Each generation, these candidates are evaluated by
the evaluation function and ranked. The worst candidates are
discarded and replaced with copies of the good candidates, ex-
cept that the copies have been randomly modified (i.e.,mutated)
and/or recombined. Fig. 1 illustrates the overall flow of a typical
search-based algorithm, and situates it in relation to constructive
and simple generate-and-test approaches.
As mentioned above, search-based PCG does not need to be

married to evolutionary computation; other heuristic/stochastic
search mechanisms are viable as well. In our experience, the
same considerations about representation and the search space
largely apply regardless of the approach to search. If we are
going to search a space of game content, we need to represent the
content somehow, and the representation (and associated varia-
tion operators) shapes the search space. Regardless of the algo-
rithm chosen we will also need to evaluate the content, and the
design of the evaluation function is another key design decision.
Some terminology from evolutionary computation will be used
in this section, simply because that field has a well-developed
conceptual apparatus suitable for adapting to our purposes.

A. Content Representation and Search Space

A central question in stochastic optimization and meta-
heuristics concerns how to represent whatever is evolved. In
other words, an important question is how genotypes (the data
structures that are handled by the evolutionary algorithm) are
mapped to phenotypes (the data structure or process that is

TOGELIUS et al.: SEARCH-BASED PROCEDURAL CONTENT GENERATION: A TAXONOMY AND SURVEY 175

Fig. 1. Three approaches to procedural content generation: constructive, simple generate-and-test and search-based. Note that not all search/optimization algo-
rithms suitable for PCG keep a population of candidate content, but most of the commonly used ones do.

evaluated by the evaluation function).5 The distinction between
genotype and phenotype can be thought of as the distinction
between a blueprint and a finished building, alternatively as
between an algorithm and the output of the algorithm. In a
game content generation scenario, the genotype might be the
instructions for creating a game level, and the phenotype the
actual game level. We can always talk of a genotype/phenotype
distinction when stochastic search is employed, even in simple
cases such as searching for the roots of an equation; in this case,
the variable values are the genotype, the result of substituting
these values for the variables the genotype and the calculation
of the left-hand side of the equation the genotype-to-phenotype
mapping.
An important distinction among representations is between

direct encodings and indirect encodings. Direct encodings
imply relative computational simplicity in the genotype-to-phe-
notype mapping, i.e., that the size of the genotype is linearly
proportional to the size of the phenotype and that each part of
the genome maps to a specific part of the phenotype. In indirect
encodings, the genotype maps nonlinearly to the phenotype
and the former need not be proportional to the latter; often,
complex computation is necessary to create the phenotype from
the genotype ([23]–[25]; see [26] for a review).
The study of representations is a broad research field within

evolutionary computation, and has produced several original
concepts that are relevant to search-based PCG [27]. A par-
ticularly well-studied case is that in which candidates are rep-
resented as vectors of real numbers. These can easily be ana-
lyzed, and many standard algorithms are more readily applied
to such representations compared to more unusual representa-
tions. In order to search the space effectively, the vector should

5This terminology is taken from evolutionary computation, but similar dis-
tinctions and considerations can be found in other forms of optimisation.

have the right dimensionality. Short vectors that are incapable
of properly representing the content (or that introduce the wrong
bias in search space) should be avoided, while at the same time
avoiding the “curse of dimensionality” associated with vectors
that are too large (or, alternatively, the algorithm should find
the right dimensionality for the vector [28]). Another principle
is that the representation should have a high locality, meaning
that a small change to the genotype should on average result in a
small change to the phenotype and a small change to the fitness
value.
Apart from these concerns, it is important that the chosen rep-

resentation is capable of representing all the interesting solu-
tions. However, this ideal can be hard to attain in practice for
indirect encodings, for which there might be areas of phenotype
space to which no genotypes map, and no simple way of de-
tecting this. With direct encodings, it is in general easy to ascer-
tain that any particular area of solution space could in principle
be found by the search process.
These considerations are important for search-based PCG, as

the representation and search space must be well-matched to
the domain for the process to perform at a high level. There is
a continuum within search-based PCG between direct and in-
direct representation. As a concrete example, a maze (for use,
e.g., in a “roguelike” dungeon adventure game) might be repre-
sented:
1) directly as a grid where mutation works on the contents
(e.g., wall, free space, door, monster) of each cell;

2) more indirectly as a list of the positions, orientations and
lengths of walls (an example of this can be found in [29]);

3) even more indirectly as a repository of different reusable
patterns of walls and free space, and a list of how they are
distributed (with various transforms such as rotation and
scaling) across the grid;

176 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

4) very indirectly as a list of desirable properties (number
of rooms, doors, monsters, length of paths and branching
factor);

5) most indirectly as a random number seed.
These representations yield very different search spaces. In

the first case, all parts of phenotype space are reachable, as
the one-to-one mapping ensures that there is always a genotype
for each phenotype. Locality is likely to be high because each
mutation can only affect a single cell (e.g., turn it from wall
into free space), which in most cases changes the fitness of the
map only slightly. However, because the length of the genotype
would be equal to the number of cells in the grid, mazes of any
interesting size quickly encounter the curse of dimensionality.
For example, a 100 100 maze would need to be encoded as a
vector of length 10 000, which is more than many search algo-
rithms can effectively approach.
At the other end of the spectrum, option 5 does not suffer

from high search space dimensionality because it searches a
one-dimensional space. The question of whether all interesting
points of phenotype space can be reached depends on the geno-
type-to-phenotype mapping, but it is possible to envision one
where they can (e.g., iterating through all cells and deciding
their content based on the next random number). However, the
reason this representation is unsuitable for search-based PCG
is that there is no locality; one of the main features of a good
random number generator is that there is no correlation between
the numbers generated by neighbouring seed values. All search
performs as badly (or as well) as random search.
Options 2–4 might thus all be more suitable representations

for searching for good mazes. In options 2 and 3, the genotype
length would grow with the desired phenotype (maze) size, but
sublinearly, so that reasonably large mazes could be represented
with tractably short genotypes. In option 4, genotype size is in-
dependent of phenotype size, and can be made relatively small.
On the other hand, the locality of these intermediate represen-
tations depends on the care and domain knowledge with which
each genotype-to-phenotype mapping is designed; both high-
and low-locality mechanisms are conceivable.

B. Evaluation Functions

Once a candidate content item is generated, it needs to be
evaluated by the evaluation function and assigned a scalar (or a
vector of real numbers6) that accurately reflects its suitability
for use in the game. In this paper the word “fitness” has the
same meaning as “utility” in some optimization contexts, and
the words could be used interchangeably. Another term that can
be found in the optimization literature is “cost”; an evaluation
function, as defined here, is the negative of a cost function.
Designing the evaluation function is ill-posed; the designer

first needs to decide what, exactly, should be optimized and then
how to formalize it. For example, one might intend to design a
search-based PCG algorithm that creates “fun” game content,

6In the case of more than one fitness dimension, a multiobjective optimiza-
tions algorithm is appropriate [30], which leads to considerations not discussed
here.

and thus an evaluation function that reflects how much the par-
ticular piece of content contributes to the player’s sense of fun
while playing. Or, alternatively, one might want to consider im-
mersion, frustration, anxiety, or other emotional states when de-
signing the evaluation function. However, emotional states are
not easily formalized, and it is not entirely clear how to measure
them even with multiple modalities of user input (such as physi-
ological measures, eye-gaze, speech, and video-annotated data)
and a psychological profile of the player. With the current state
of knowledge, any attempt to estimate the contribution to “fun”
(or affective states that collectively contribute to player experi-
ence) of a piece of content is bound to rely on conflicting as-
sumptions. More research within affective computing and mul-
timodal interaction is needed at this time to achieve fruitful for-
malizations of such subjective issues; see [31] for a review. Of
course, the designer can also try to circumvent these issues by
choosing to measure narrower and more game-specific proper-
ties of the content.
Three key classes of evaluation function can be distinguished

for the purposes of PCG: direct, simulation-based, and inter-
active evaluation functions. (A more comprehensive discussion
about evaluation functions for game content can be found in a
recently published overview paper [32]).
1) Direct Evaluation Functions: In a direct evaluation func-

tion, some features are extracted from the generated content and
mapped directly to a fitness value. Hypothetical features might
include the number of paths to the exit in a maze, firing rate of
a weapon, spatial concentration of resources on an RTS map,
material balance in randomly selected legal positions for board
game rule set, and so on. The mapping between features and fit-
ness might be linear or nonlinear, but ideally does not involve
large amounts of computation and is likely specifically tailored
to the particular game and content type. This mapping might
also be contingent on a model of the playing style, preferences
or affective state of the player, which means that an element of
personalization is possible.
An important distinction within direct evaluation functions

is between theory-driven and data-driven functions. In theory-
driven functions, the designer is guided by intuition and/or some
qualitative theory of player experience to derive a mapping. On
the other hand, data-driven functions are based on data collected
on the effect of various examples of content via, for example,
questionnaires or physiological measurements, and then using
automated means to tune the mapping from features to fitness
values.
2) Simulation-Based Evaluation Functions: It is not always

apparent how to design a meaningful direct evaluation function
for some game content—in some cases, it seems that the content
must be sufficiently experienced and manipulated to be evalu-
ated. A simulation-based evaluation function, on the other hand,
is based on an artificial agent playing through some part of the
game that involves the content being evaluated. This approach
might include finding the way out of a maze while not being
killed or playing a board game that results from the newly-gen-
erated rule set against another artificial agent. Features are then
extracted from the observed gameplay (e.g., Did the agent win?
How fast? How was the variation in playing styles employed?)
and used to calculate the value of the content. The artificial agent

TOGELIUS et al.: SEARCH-BASED PROCEDURAL CONTENT GENERATION: A TAXONOMY AND SURVEY 177

might be completely hand-coded, or might be based on a learned
behavioural model of a human player, making personalization
possible for this type of evaluation function as well.
Another key distinction is between static and dynamic simu-

lation-based evaluation functions. In a static evaluation func-
tion, it is not assumed that the agent changes while playing
the game; in a dynamic evaluation function the agent changes
during the game and the evaluation function somehow incorpo-
rates this change. For example, the implementation of the agent
can be based on a learning algorithm and the fitness value can
be dependent on learnability: how well and/or fast the agent
learns to play the content that is being evaluated. Learning-
based dynamic evaluation functions are especially appropriate
when little can be assumed about the content and how to play
it. Other uses for dynamic evaluation functions include cap-
turing, e.g., order effects and user fatigue. It should be noted
that while simulating the game environment can typically be ex-
ecuted faster than real-time, simulation-based evaluation func-
tions are in general more computationally expensive than di-
rect evaluation functions; dynamic simulation-based evaluation
functions can thus be time-consuming, all but ruling out online
content generation.
3) Interactive Evaluation Functions: Interactive evaluation

functions score content based on interaction with a player in the
game, which means that fitness is evaluated during the actual
gameplay. Data can be collected from the player either explicitly
using questionnaires or verbal cues, or implicitly by measuring,
e.g., how often or long a player chooses to interact with a partic-
ular piece of content [2], [33], when the player quits the game,
or expressions of affect such as the intensity of button-presses,
shaking the controller, physiological response, eye-gaze fixa-
tion, speech quality, facial expressions, and postures.
The problem with explicit data collection is that it can in-

terrupt the gameplay, unless it is well integrated in the game
design. On the other hand, the problems with indirect data col-
lection are that the data is often noisy, inaccurate, of low-reso-
lution and/or delayed, and that multimodal data collection may
be technically infeasible and/or expensive for some types of
game genres—e.g., eye-tracking and biofeedback technology
are still way too expensive and unreliable for being integrated
within commercial-standard computer games. However, such
technology can more easily be deployed in lab settings and used
to gather data on which to base player models that can then be
used outside of the lab.

C. Situating Search-Based PCG

At this point, let us revisit the distinctions outlined in
Section II and ask how they relate to search-based PCG. In
other words, the aim is to situate search-based PCG within the
family of PCG techniques. As stated above, search-based PCG
algorithms are generate-and-test algorithms. They might take
parameter vectors or not. If they do, these are typically param-
eters that modify the evaluation function, such as the desired
difficulty of the generated level. As evolutionary and similar
search algorithms rely on stochasticity for, e.g., mutation, a
random seed is needed; therefore, these algorithms should be
classified as stochastic rather than deterministic. There is no

way of knowing exactly what you will get with search-based
PCG algorithm, and in general no way of reproducing the same
result except for saving the result itself.
As there is no general proof that any metaheuristic algorithms

ultimately converge (except in a few very simple cases), there
is no guaranteed completion time for an search-based PCG al-
gorithm, and no guarantee that it will produce good enough so-
lutions. The time taken depends mostly on the evaluation func-
tion, and because an evaluation function for a content genera-
tion task would often include some kind of simulation of the
game environment, it can be substantial. Some of the exam-
ples in the survey section below take days to run, others pro-
duce high-quality content in under a second. For these reasons
it might seem that search-based PCG would be less suitable for
online content generation, and better suited for offline explo-
ration of new design ideas. However, as we shall see later, it
is possible to successfully base complete game mechanics on
search-based PCG, at least if the content generated is optional
rather than necessary.
We can also choose to look at the relation between indirect

representation and search-based PCG from a different angle. If
our search-based PCG algorithm includes an indirect mapping
from genotype to phenotype, this mapping can be viewed as
a PCG algorithm in itself, and an argument can be made for
why certain types of PCG algorithms are more suitable than
others for use as part of an search-based PCG algorithm. In
other words, this “inner” PCG algorithm (the genotype-to-phe-
notype mapping) becomes a key component in the main PCG
algorithm. We can also see genotype-to-phenotype mapping as
a form of data decompression, which is consistent with the view
discussed in Section II that deterministic PCG can be seen as
data compression. It is worth noting that some indirect encod-
ings used in various evolutionary computation application areas
bear strong similarities to PCG algorithms for games; several
such indirect encodings are based on L-systems [34], as are al-
gorithms for procedural tree and plant generation [24], [35].

IV. SURVEY OF SEARCH-BASED PCG

Search-based PCG is a new research area and the volume of
published papers is still manageable. In this section, we survey
published research in search-based PCG. While no review can
be guaranteed to cover all published research in a field, we have
attempted a thorough survey that covers much of the known
literature.
The survey proceeds in the following order: it first exam-

ines work on generating necessary game content, and then pro-
ceeds to generating optional content, following the distinction
in Section II-B. Of course, this distinction is not always clear
cut: some types of content might be optional in one game, but
necessary in another. Within each of these classes we distin-
guish between types of content: rules and mechanics, puzzles,
tracks, levels, terrains, andmaps are deemed necessary, whereas
weapons, buildings and camera placement are deemed optional.
Within each content type section, we discuss each project in ap-
proximate chronological order, based on the years in which the
relevant papers were first published.

178 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

Fig. 2. Ludi system for generating game rules.

A. Necessary Content

1) Rules and Mechanics: Game rules and their associated
game mechanics might be said to be the most fundamental type
of content; it is hard to conceive of a game without any rules.
It is also very uncommon to change the rules while a game
is being played, though such examples exist. This perspective
places rules firmly on the “necessary” end of content that can
be generated.
Hom and Marks [36] evolved two-player board game rules

for balance. Rules are represented relatively directly as expres-
sion trees in the zillions of games (ZOG) game description lan-
guage [37], with the search space constrained to games similar
to Tic-Tac-Toe, Reversi, and Checkers; a total of 5616 games
are contained in this space. The evaluation function is simula-
tion-based, static and theory-driven: a game is tested by playing
two sides against each other in the ZOG game engine. Quality
values are calculated as the negative of the score difference be-
tween the two players, assuming that board games are better
when there is no advantage for either side.
Togelius and Schmidhuber [38] conducted an experiment in

which rulesets were evolved offline for grid-based games in
which the player moves an agent, in a manner similar to a dis-
crete version of Pac-Man. Apart from the agent, the grid is pop-
ulated by walls and “things” of different colors, which can be
interpreted as items, allies or enemies depending on the rules.
Rulesets are represented fairly directly as fixed-length param-
eter vectors, interpreted as the effects on various objects when
they collided with each other or the agent, and their behaviour.
For example, blue things could move clockwise around the grid
and kill red things upon collision, but be teleported away and
increase the game score when colliding with the agent. A rel-
atively wide range of games can be represented using this vo-
cabulary, and genotype generation is deterministic except for

the starting position of objects. The evaluation function is sim-
ulation-based, dynamic and theory-driven: an evolutionary rein-
forcement learning algorithm learns each ruleset and the ruleset
is scored according to how well it learned. Games that are im-
possible or trivial are given low fitness values, whereas those
that can be learned after some time score well.
Browne [3] developed the Ludi system for offline design of

rules for board games using a form of genetic programming.
Game rules are represented relatively directly as expression
trees, formulated in a game description language that was
specially designed for the project. This language allows the
representation of a sufficiently wide variety of board games,
including many well-known games. The evolutionary process
that creates new rule sets is nonstandard in the sense that
suboptimal children with poor performance or badly formed
rules are not discarded but are instead retained in the population
with a lower priority, to maintain a necessary level of genetic
diversity. The evaluation function is a complex combination
of direct measures and static simulation-based measures: for
example, standard game-tree search algorithms are used to play
the generated game as part of the content evaluation, to inves-
tigate issues such as balance and time to play the game. While
hand-coded, the evaluation function is based on extensive study
of existing board games and measurements of user preferences
for board games that exhibited various features. An illustration
of the architecture of Ludi is shown in Fig. 2.
Smith and Mateas [5] provide a representation of game rules

for simple games that differ frommost SBPCG, but which could
easily form part of a search-based approach. Game rules and
ontologies are represented relatively indirectly as answer sets
in answer set programming (ASP), which is a form of con-
straint programming. Each ruleset is a list of assertions of ar-
bitrary length, in which each assertion can specify the existence
of a kind of NPC, the effect of two entities colliding, a win-

TOGELIUS et al.: SEARCH-BASED PROCEDURAL CONTENT GENERATION: A TAXONOMY AND SURVEY 179

ning condition, etc. Using this encoding, many questions about
the game (such as “is it winnable?” and “can it be won without
shooting anyone?”) can be answered through deduction rather
than playthrough. Sets of games that correspond to positive an-
swers to stated questions (rules that satisfy stated constraints)
can be generated through simply posing the relevant question.
In the current implementation of the idea, in which games are
generated as part of a metagame in which players explore the
space of game mechanics, a simple generate-and-test procedure
is used where games that are unplayable are rejected by the user.
Depending on the implementation of ASP within the solver, the
generation of answer sets that fit the specified constraints might
or might not be seen as a search-based (as we use the term) gen-
eration process.
Salge and Mahlmann [39] propose a simulation-based eval-

uation function based on the information-theoretic concept of
relevant information, which could be adapted to evaluate game
mechanics in a wide range of game types. The relevant informa-
tion of a game mechanic is defined in this context as the min-
imum amount of information (about the game state) needed to
realize an optimal strategy. This threshold can be approximated
by evolving a player for the game in question and measuring
themutual information between sensor inputs (state description)
and actions taken by the player. The authors argue that several
common game design pathologies correlate to low relevant in-
formation.
2) Puzzles: Puzzles are often considered a genre of gaming,

though opinion is divided on whether popular puzzles such as
Sudoku should be considered games or not. Additionally, how-
ever, puzzles are part of very many types of games: there are
puzzles inside the dungeons of the Legend of Zelda (Nintendo
1986) game series, in locations of classic adventure games such
as The Secret of Monkey Island (LucasArts 1990), and there are
even puzzles of a sort inside the levels of first-person shooter
(FPS) games such as Doom (id Software 1993). Usually, these
puzzles need to be solved to progress in the game, which means
they are necessary content.
Oranchak [40] constructed a genetic algorithm-based puzzle

generator for Shinro, a type of Japanese number puzzle, some-
what similar to Sudoku. A Shinro puzzle is solved by deducing
which of the positions on an 8 8 board contain “holes” based
on various clues. The puzzles are directly encoded as matrices,
wherein each cell is empty or contains a hole or arrow (clue).
The evaluation function is mainly simulation-based through a
tailor-made Shinro solver. The solver is applied to each candi-
date puzzle, and then its entertainment value is estimated based
on both how many moves are required to solve the puzzles, and
some direct measures including the number of clues and their
distribution.
Ashlock [41] generated puzzles of two different but related

types—chess mazes and chromatic puzzles—using evolu-
tionary computation. Both types of puzzles are represented
directly; in the case of the chess mazes, as lists of chess pieces
and their positions on the board, and in case of the chromatic
puzzles as 8 8 grids in which a number in each cell indicates
its color. The evaluation function is simulation-based and
theory-driven: a dynamic programming approach tries to solve

each puzzle, and fitness is simply the number of moves neces-
sary to solve the puzzle. A target fitness is specified for each
type of puzzle, aiming to give an appropriate level of challenge.
3) Tracks and Levels: Most games that focus on the player

controlling a single agent in a two- or three-dimensional space
are built around levels, which are regions of space that the
player-controlled character must somehow traverse, often
while accomplishing other goals. Examples of such games
include platform games, FPS games, two-dimensional scrolling
arcade games and even racing games.
Togelius et al. [42], [43] designed a system for offline/online

generation of tracks (necessary or optional content, depending
on game design) for a simple racing game. Tracks are repre-
sented as fixed-length parameter vectors. A racing track is cre-
ated from the parameter vector by interpreting it as the parame-
ters for b-spline (a sequence of Bezier curves) yielding a deter-
ministic genotype-to-phenotype mapping. The resulting shape
forms the midline of the racing track. The evaluation function is
simulation-based, static and personalized. Each candidate track
is evaluated by letting a neural network-based car controller
drive on the track. The fitness of the track is dependent on the
driving performance of the car: amount of progress, variation in
progress and difference between maximum and average speed.
(Note that it is the track that is being tested, not the neural net-
work-based car controller.) The personalization comes from the
neural network previously having been trained to drive in the
style of the particular human player for which the new track is
being created. This somewhat unintuitive process was shown
effective in generating tracks suited to particular players.
Pedersen et al. [44] modified an open-source clone of the

classic platform game Super Mario Bros to allow personalized
level generation. Levels are represented very indirectly as a
short parameter vector describing mainly the number, size and
placement of gaps in the level. This vector is converted to a
complete level in a stochastic fashion. The evaluation function
is direct, data-driven and personalized, using a neural net-
work that converts level parameters and information about the
player’s playing style to one of six emotional state predictors
(fun, challenge, frustration, predictability, anxiety, boredom),
which can be chosen as components of an evaluation function.
These neural networks are trained through collecting both
gameplay metrics and data on player preferences using variants
of the game on a web page with an associated questionnaire.
Sorenson and Pasquier [45] devised an indirect game level

representation aimed at games across a number of different but
related genres. Their representation is based on “design ele-
ments,” which are elements of levels (e.g., individual platforms
or enemies, the vocabulary would need to be specified for each
game by a human designer) that can be composed into complete
levels. The design elements are laid out spatially in the genome,
to simplify crossover. Levels are tested in two phases: first, the
general validity of the level is tested by ensuring, e.g., that all
areas of the level are appropriately connected, or that a required
number of design elements of each type are present. Any level
that fails the test is relegated to a second population, using the
FI-2Pop evolutionary algorithm [46] that is specially designed
for constraint satisfaction problems. Valid levels are then as-

180 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

sessed for fitness by a direct or weakly simulation-based theory-
driven evaluation function, which estimates the difficulty of the
level and rewards intermediately challenging levels. This func-
tion might be implemented as the length from start to finish, or
the size of gaps to jump over, depending on the particular game.
Jennings-Teats et al. [47] describe initial work towards cre-

ating platform game levels that adapt their difficulty to a human
player during runtime. The generation process is based on gen-
erate-and-test, but is not completely search-based, as no opti-
mization mechanism is employed. Initially, player data are col-
lected to rank short level segments according to their difficulty.
The level is then generated as it is played by composing the
segments in front of the player, based on a rhythm-based gen-
eration mechanism. The generated level part is then evaluated
by a number of “critics” based on the acquired difficulty ratings
of the constituent level segments. Level parts that are rejected
by the critics are simply regenerated until parts of appropriate
difficulty are found. The ensemble of critics can therefore be
conceived as a direct, data-driven binary evaluation function.
4) Terrains and Maps: A large number of games are built

around terrains or maps, which can be loosely defined as two-
or two-and-a-half-dimensional planes with various features sit-
uated within them that might or might not be gameplay-related
(e.g., types of surface, or impassable rocks or rivers) and pos-
sibly a heightmap specifying elevations of various parts of the
maps. In particular, many strategy games are heavily dependent
on maps and the character of the map can strongly influence the
gameplay. The category of terrains and maps partly overlaps
with the previous category, as, e.g., FPS levels can also be con-
sidered as maps.
Frade et al. [48] evolved terrains for the video game Chapas.

The terrain was represented very indirectly as expression trees,
which were evolved with genetic programming using an ap-
proach similar to the CPPN [25] encoding. The elevation at each
point is determined by querying the evolved expression trees,
substituting the current position coordinates for constants in the
tree. The evaluation function is direct and theory-driven, based
on “accessibility”; this function scores maps depending on the
largest connected area of flat or almost-flat terrain (this value
is bounded to prevent the evolution of completely flat maps).
An interesting result was that whereas the algorithm produced
useful maps, they were sometimes visually unpleasant and re-
quired human inspection before being used.
Togelius et al. [49], [50] designed a method for generating

maps for RTS games. Two semidirect representations were
investigated, one for a generic heightmap-based strategy game
and one for the seminal RTS StarCraft (Blizzard 1998). In
both representations, positions of bases and resources are
represented directly as coordinates, but other terrain fea-
tures are represented more indirectly. For the heightmap-based
representation, positions, standard deviations and heights of
several two-dimensional Gaussians are evolved, and the height
of the terrain at each point is calculated based on those. For
the StarCraft representation, mountain formations are drawn
using a stochastic (but deterministic) method inspired by “turtle
graphics.” A collection of direct and lightly simulation-based,
theory-driven evaluation functions are used to evaluate the

Fig. 3. Evolved map for the StarCraft RTS game.

maps. These functions were directly motivated by gameplay
considerations and are to a large extent based on the
search algorithm; for example, the resource balance evaluation
function penalises the difference in the closest distance to
resources between the players. The search mechanism in this
method differs considerably from most other search-based PCG
research because it is based on a multiobjective evolutionary
algorithm (MOEA) [30] (the particular algorithm used is the
SMS-EMOA [51]). Because each of the evaluation functions
is partially conflicting with several of the other evaluation
functions, the MOEA tries to find the optimal tradeoffs be-
tween these objectives, expressed as a Pareto front. A human
designer, or a game-balancing algorithm, can then choose
solutions from among those on the Pareto front. An example of
a map generated using this method can be seen in Fig. 3.
It should be noted that there is a substantial body of liter-

ature on constructive methods for generating maps, which is
not extensively discussed here as it is not search-based. Ter-
rain generation systems for games based on fractals (such as
the diamond-square algorithm [52], [53]), on agent-based sim-
ulated erosion [54] or on cellular automata [55] have been pro-
posed previously; while most such algorithms enjoy a short and
predictable runtime, they cannot generally be controlled for the
level of gameplay properties (e.g., there is no way to guarantee
a balanced map, or maybe not even to guarantee one wherein
all areas are accessible). An interesting approach is that of Dio-
rama, a map generator for the open-source strategy game War-
zone 2100 that uses answer set programming. Some commercial
games, such as those in the Civilization series, feature proce-
dural map generation, but that is usually accomplished through
simple methods, such as seeding islands in the middle of the
ocean and letting them grow in random directions.
Ashlock et al. [56] proposed an indirect search-based method

for landscape generation based on an evolvable L-system repre-
sentation and used this approach to evolve fractal landscapes to
fit specific shapes; however, no concern was given to the suit-
ability of these landscapes for games. Some recent work has
focused on integrating various dissimilar terrain generation al-
gorithms into mixed-initiative models [6].

TOGELIUS et al.: SEARCH-BASED PROCEDURAL CONTENT GENERATION: A TAXONOMY AND SURVEY 181

Fig. 4. Galactic Arms Race game, featuring online distributed interactive evolution of weapons.

5) Narrative and Storytelling: Many games are built around
or contain some form of story/narrative—this is the case
for most first-person shooters and platform games, and all
role-playing games, but arguably not for many other types of
games, such as matching tile games like Tetris (Alexey Pajitnov
1984) or Bejeweled (PopCap 2007) [57]. (It should be noted
that there is a debate about to what degree all games contain
or constitute narrative, and some people would argue that
Tetris is a game with narrative [58].) Attempts to automatically
generate narrative for games go back a few decades, and a
variety of approaches have been developed for problems that
can variously be described as online and offline. Some systems
construct background stories and/or playable scenarios from
scratch, whereas others are focused on controlling the actions
of NPCs in response to the player character so as to fulfill dra-
matic goals. The approaches taken can variously be described
as constructive and generate-and-test. The core mechanism in
many of these systems is some version of classical AI planning
[59]–[61] (including Facade, the most famous example of
procedural storytelling [62]), though there are a few examples
of search-based approaches [63].
Due to the sheer volume of work in this area, and the fact

that most of it is not search-based in the sense we have defined
above, we will not survey work on narrative and storytelling
as part of this paper. The reader is referred to Wardrip-Fruin’s
recent book [64] for a history and critique of that field.

B. Optional Content

Because optional content is not always critical to the game
(i.e., it is forgiving), it can sometimes support more creative
exploration, as discussed in this section.
1) Weapons: Because combat is a common facet of modern

games, weapons are well-suited for procedural generation.

While most games that feature weapons require their usage for
the player to make progress within the game, many let their
players carry a number of the weapons at the same time, which
means that each particular weapon is optional (i.e., a useless
weapon will simply not be used, and exchanged at the next
opportunity).
Hastings et al. [2], [33] developed amultiplayer game built on

search-based PCG called Galactic Arms Race, in which players
guide a spaceship through the sectors of a galaxy, engaging in
firefights with enemies and collecting weapons. A fixed-size
array of weapons can be carried, and the player can choose to
exchange any particular weapon currently being carried each
time a newweapon is found.Weapons are represented indirectly
as variable-size vectors of real values, which are interpreted as
connection topologies and weights for neural networks, which
in turn control the particle systems that underlie the weapons
[65]. The evaluation function is interactive, implicit and dis-
tributed. The fitness of each weapon depends on how often the
various users logged onto the same server choose to fire the
weapon relative to how long it sits unused in their weapons
cache. This evaluation function is appealing because players in
effect indicate their preferences implicitly by simply playing
without needing to know the mechanics or even existence of
the underlying evolutionary algorithm. The game is illustrated
in Fig. 4.
The same authors [66] recently added a method that enables

more directly player-controlled weapons generation toGalactic
Arms Race. Through the same representation as that described
above, this feature allows players to perturb individual genes of
their choice within the genome of a chosen weapon. This new
weapons lab feature in effect adds a kind of genetic engineering
to the game, which the players must earn the right to access.
An interesting parallel in the world of commercial games is

Borderlands (Gearbox Interactive 2009), a collaborative online

182 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

FPS in which all weapons are procedurally generated. However,
there is no search-based process; rather, weapon parameters are
simply selected at random, and the approximate efficacy of the
weapon is capped at the current level of the player character.
2) Buildings: Martin et al. [67] designed a system for inter-

actively evolving buildings for the prototype video game Sub-
version, in development by the commercial video game devel-
oper Introversion. In this game, whole cities are procedurally
generated by the player, meaning that the individual buildings
could be seen as optional content. The buildings are represented
relatively indirectly in a custom mark-up language, which de-
scribes each building from the bottom up as a stack of three-di-
mensional objects. Each object is in turn a two-dimensional
shape that is vertically extruded, and various transformations
can be applied to objects or groups of objects. The explicit
interactive evaluation function (which is similar to functions
commonly used in evolutionary art [68]), works as follows:
each “generation” the user selects two parent buildings and the
system produces a new screen of 16 offspring buildings. Varia-
tion is achieved through both structurally recombining the par-
ents and mutating the numerical parameters of the offspring.
Substantial work has been done on procedural modelling of

architecture within the computer graphics community. For ex-
ample, shape grammars have been invented that take advantage
of the regularity of architectural feature to enable compact and
artist-friendly representation of buildings [69], [70], as well
as techniques for semiautomatically extracting the “building
blocks” for use in such description from archetypical building
models [71]. Such description languages, somewhat similar
to L-systems, could conceivably be used as representations in
future search-based approaches to building and city generation.
3) Camera Control: Many games feature an in-game virtual

camera throughwhich the player experiences the world. Camera
control is defined as controlling the placement, angle and pos-
sibly other parameters of the depending on the state of the game.
Camera control is an important content class for many game
genres, such as 3-D platformers, where the player character is
viewed from a third-person vantage point. We consider camera
control to be optional content, as a game is typically playable,
thoughmore challenging, with suboptimal camera control. Nev-
ertheless, camera control may be viewed as necessary content
for some third-person games since, in certain occasions, a poor
camera controller could make the game completely unplayable.
Camera control coupled withmodels of playing behavior may

guide the generation of personalised camera profiles. Burelli and
Yannakakis [72], [73] devised a method for controlling in-game
camera movements to keep specified objects (or characters) in
view and potentially other objects out of view, while ensuring
smooth transitions. Potential camera configurations are eval-
uated by calculating the visibility of the selected objects. A
system based on probabilistic roadmaps and artificial potential
fields then smoothly moves the camera towards the constantly
reoptimized best global position. The quality of camera posi-
tions may feed an SBPCG component which, in turn, can set the
weighting parameters of various camera constraints according
to a metaheuristic (e.g., a player model).
Yannakakis et al. [74] introduce the notion of affect-driven

camera control within games by associating player affective

states (e.g., challenge, fun, and frustration) to camera profiles
and player physiology. The affective models are constructed
using neuroevolutionary preference learning on questionnaire
data from several players of a 3-D Pac-Man like game named
Maze-Ball. Camera profiles are represented as a set of three
parameters: distance and height from the player character and
frame-to-frame coherence (camera speed in between frames).
This way, personalized camera profiles can be generated to max-
imize a direct, data-driven evaluation function which is repre-
sented by the neural network predictor of emotion.
4) Trees: Talton et al. [75] developed a system for offline

manual exploration of design spaces of 3-D models; their main
prototype focuses on trees. This system lets users view a two-
dimensional pane of tree models, and navigate the space by
zooming in on different parts of the pane. At all times the user
can see the tree models that are generated at the selected point
as well as nearby point; in other words this approach is an in-
teractive evaluation function. The tree models are represented
as fixed-length vectors of real-numbers. As the vector dimen-
sionality is always higher than two, the vector is mapped to the
two-dimensional pane through dimensionality reduction and es-
timation of density. The underlying algorithms is therefore com-
parable to an estimation of distribution algorithm (EDA) with
interactive fitness.

C. A Note on Chronology

The first published search-based PCG-related papers that we
know of are Togelius et al.’s first paper on racing track evolu-
tion [42], published in 2006, Hastings et al.’s paper on NEAT
Particles (a central part of Galactic Arms Race) [65], and Hom
and Marks’ paper on balanced board games [36]. Two publi-
cations on evolving rules for games (the paper by Togelius and
Schmidhuber [38] and the Ph.D. thesis of Cameron Browne [3])
appeared in 2008; the work in these two papers was carried
out independently of each other and independently of Hom and
Marks’ work, though Browne’s work was started earlier. Most
of the subsequent papers included in this survey, though not all,
were in some way influenced by these earlier works, and gener-
ally acknowledge this influence within their bibliographies.

D. Summary

Of the 14 projects described above in this section that are
unequivocally search-based:
• six use direct evaluation functions, four of those are theory-
driven rather than data-driven;

• two use interactive and six use simulation-based evaluation
functions;

• 12 use a single fitness dimension, or a fixed linear combi-
nation of several evaluation functions;

• six represent content as vectors of real numbers;
• four represent content as (expression) trees of some form;
• three represent content directly in matrices where the geno-
type is spatially isomorphic to the phenotype.

Some patterns are apparent. Most of the examples of evolving
rules and puzzles represent the content as expression trees and
all use simulation-based evaluation functions. This could be due
to the inherent similarity of rules to program code, which is
often represented in tree form in genetic programming, and the

TOGELIUS et al.: SEARCH-BASED PROCEDURAL CONTENT GENERATION: A TAXONOMY AND SURVEY 183

apparent hardness of devising direct evaluation functions for
rules. On the other hand, levels and maps are mostly evaluated
using direct evaluation functions and represented as vectors of
real numbers. Only two studies use interactive evaluation func-
tions, and only two use data-driven evaluation functions (based
on player models). There does not seem to be any clear reason
why these last two types of evaluation functions are not used
more, nor why simulation-based evaluation functions are not
used much outside of rule generation.

V. OUTLOOK

As can be seen in the previous section, there are already a
number of successful experiments in search-based PCG. About
half of these were published in 2010, indicating that this field is
currently drawing considerable interest fromwithin the gameAI
and computational intelligence and games (CIG) communities.
By classifying these experiments according to the taxonomies

presented in this paper, it can be seen both that: 1) though all
are examples of SBPCG, they differ from each other in sev-
eral important dimensions,; and 2) there is room for approaches
other than those that have already been tried, both within the
type of content being generated and the algorithmic approach
to it generation. Indeed, given the large variety of game genres
and types of game content out there, there is arguably plenty
of low-hanging fruit for researchers interested in this field. At
the same time, there are several hard and interesting research
challenges. It is important that research is carried out both on
those easier problems for which more or less immediate suc-
cess is probable, and ideally that search-based PCG techniques
are included in shipped games. But it is equally important that
research continues on hard problems where we are currently
nowhere near producing content of a sufficient quality for in-
cluding in commercial games. Such research could both lead to
viable content generators in the future, and help advance the sci-
ence of game design. Below is an attempt to identify the major
research challenges in SBPCG.
• Which types of content are suitable to generate? It is clear
that some types of content are easier than others to generate
using search or optimization algorithms. The overarching
question is which types can be generated well enough, fast
enough and reliably enough to be used in actual production
games rather than the type of research prototypes that most
of the papers above are based on. The answer will partly
depend on whether the content will be generated offline, in
which case generation speed and reliability is less impor-
tant while quality can be emphasized, or online, in which
case speed is very important but some aspects of quality
might be sacrificed. The importance of reliability depends
partly on whether the content generated is optional or nec-
essary; when generating optional content, larger variations
in quality are more acceptable.

• How can we avoid catastrophic failure? One of the main
arguments against PCG in general from representatives of
the games industry, at least when discussing online gener-
ation of necessary content, is lack of reliability—or more
precisely, the risk of catastrophic failure [76]. Given the
way most commercial games are designed, any risk of the

player being presented with unplayable content is unac-
ceptable. One response to this challenge is to invent new
game designs for which all content is to some extent op-
tional, or occasional unplayable content is otherwise tol-
erable. Another response is to ensure that all content is
of sufficient quality. Such a guarantee might be possible
through the content representation, though this approach
would likely limit the diversity of content that can be gen-
erated. The evaluation function can also enforce a guar-
antee. For many content types, it is likely that better sim-
ulation-based evaluation functions can avoid catastrophic
failure by automatically playing through the content thor-
oughly; however, that approach might be computationally
prohibitively expensive.

• How can we speed up content generation? The compu-
tational expense of search-based PCG can be prohibitive
for online generation, and sometimes even for offline
generation. A key challenge is to speed up the genera-
tion process as much as possible. It is well-known that,
depending on the representation and shape of the search
space, some stochastic optimization algorithms are more
efficient than others. For vectors of real numbers there
is an especially large assortment of powerful optimizers
available, including nonevolutionary techniques such as
particle swarm optimization [20]. Regardless of repre-
sentation, there are algorithms available that take good
advantage of characteristics of the search space, such as
the presence of constraints.

• How is game content best represented? For most content
types, multiple representations are possible, as discussed in
Section III-A. Themost appropriate representation for each
content generation problem is likely to vary depending on
a number of factors, e.g., the desired novelty/reliability
tradeoff. However, when designing a representation for a
new problem, it would be useful to have a set of principles
and best practices for content representation. The partic-
ular type of content being generated will also significantly
affect the representational options available. Some types of
content are easier to represent than others and the amount
of expertise require to parameterize a particular class of
content may impact the cost of creating a game around it.

• How can player models be incorporated into evalua-
tion functions? With a few exceptions, the experiments
discussed above use theory-driven evaluation functions,
which assume that some particular feature of some content
type provides a good playing experience for players in
general. For many applications, it would be advantageous
to move to data-driven evaluation functions based on
experiments on real players, making it possible to adapt
the content to optimize predicted fun for particular classes
of players. The Super Mario Bros level generation and
the Maze-Ball camera profile generation experiments
discussed above suggests a way to base direct evaluation
functions on recorded player preferences when the content
is represented as vectors of real numbers, but how to do
that for simulation-based evaluation functions or when
content is represented in a less straightforward manner
is an open research topic. Player affective and cognitive

184 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

models deriving from the fusion of multiple modalities of
player input may provide some answers to the problem.

• Can we combine interactive and theory-driven evaluation
functions? Interactive evaluation functions show great
promise by representing the most accurate and relevant
judgment of content quality, but they are not straightfor-
ward to implement for most content generation problems.
Major outstanding issues are how to design games so that
effective implicit evaluation functions can be included,
and how to speed up the optimisation process given sparse
human feedback. One way to achieve the latter could
be to combine the interactive evaluation of content with
data-driven evaluation functions, thereby allowing the two
evaluation modes to inform each other.

• Can we combine search-based PCG with top-down ap-
proaches? Coupled with the right representation and eval-
uation function, a global optimization algorithm can be
a formidable tool for content generation. However, one
should be careful not to see everything as a nail just be-
cause one has a hammer; not every problem calls for the
same tool, and sometimes several tools need to be com-
bined to solve a problem. In particular, the hybridization
of the form of bottom-up perspective taken by the search-
based approach with the top-down perspective taken in AI
planning (commonly used in narrative generation) could
be very fruitful. It is currently not clear how these two
perspectives would inform each other, but their respec-
tive merits make the case for attempting hybrid approaches
quite powerful.

• How can we best assess the quality and potential of con-
tent generators?As the research field of procedural content
generation continues to grow and diversify, it becomes ever
more important tofindwaysof evaluating thequalityof con-
tent generators. Oneway of doing this is to organize compe-
titionswhere researchers submit their separate solutions to a
commoncontent generationproblem (with a commonAPI),
and players play and rank the generated content. The recent
Mario AI level generation competition is the first example
of this. In this competition, participants submitted person-
alized level generators for a version of Super Mario Bros,
and attendants at a scientific conference played levels gen-
erated just for them decided which of the freshly generated
levels they liked best [77]. However, it is also important to
assess other properties of content generators, such as char-
acterizing theirexpressive range: thevariation in thecontent
generatedabya specificcontentgenerator [78].Conversely,
it is important to analyze the range of domains for which a
particular content generator can be effective.

We believe that progress on these problems can be aided by
experts from fields outside computational intelligence such as
psychology, game design studies, human–computer interface
design and affective computing, creating an opportunity for
fruitful interdisciplinary collaboration. The potential gains from
providing good solutions to all these challenges are significant:
the invention of new game genres built on PCG, streamlining
of the game development process, and deeper understanding of
the mechanisms of human entertainment are all possible.

ACKNOWLEDGMENT

This paper builds on and extends a previously published con-
ference paper by the same authors [1]. Compared to the previous
paper, this paper features an updated taxonomy, a substantially
expanded survey section, and an expanded discussion on future
research directions and challenges.
The authors would like to thank the anonymous reviewers for

their substantial and useful comments. They would also like to
thank all the participants in the discussions in the Procedural
Content Generation Google Group.

REFERENCES

[1] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne,
“Search-based procedural content generation,” in Proc. EvoAppl.,
ser. Lecture Notes in Computer Science. Berlin, Germany:
Springer-Verlag, 2010, vol. 6024.

[2] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Automatic content
generation in the galactic arms race video game,” IEEE Trans. Comput.
Intell. AI Games, vol. 1, no. 4, pp. 245–263, Dec. 2010.

[3] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Queensland Univ. Technol., Queensland,
Australia, 2008.

[4] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player ex-
perience for content creation,” IEEE Trans. Comput. Intell. AI Games,
vol. 2, no. 1, pp. 54–67, Mar. 2010.

[5] A. M. Smith and M. Mateas, “Variations forever: Flexibly generating
rulesets from a sculptable design space of mini-games,” in Proc. IEEE
Conf. Comput. Intell. Games, 2010, pp. 273–280.

[6] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “Integrating
procedural generation and manual editing of virtual worlds,” in Proc.
ACM Foundations Digital Games. New York: ACM Press, 2010.

[7] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K. O.
Stanley, and C. H. Yong, “Computational intelligence in games,” in
Computational Intelligence: Principles and Practice, G. Y. Yen and
D. B. Fogel, Eds. Piscataway, NJ: IEEE, 2006.

[8] S. M. Lucas and G. Kendall, “Evolutionary computation and games,”
IEEE Comput. Intell. Mag., vol. 1, pp. 10–18, 2006.

[9] S. Rabin, AI Game Programming Wisdom. Boston, MA: Charles
River Media, 2002.

[10] D. M. Bourg and G. Seemann, AI for Game Developers. Sebastopol,
CA: O’Reilly, 2004.

[11] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley,
Texturing and Modeling: A Procedural Approach (Third Edition).
San Mateo, CA: Morgan Kaufmann, 2002.

[12] J. Whitehead, “Towards procedural decorative ornamentation in
games,” in Proc. FDG Workshop Procedural Content Generation,
2010.

[13] G. S. P. Miller, “The definition and rendering of terrain maps,” Proc.
SIGGRAPH, vol. 20, 1986.

[14] B. W. Kernighan and R. Pike, The Practice of Programming.
Reading, MA: Addison-Wesley, 1999.

[15] F. Pachet, “Beyond the cybernetic fantasy jam: The continuator,” IEEE
Comput. Graph. Appl., vol. 24, no. 1, pp. 31–35, 2004.

[16] K. Sims, “Artificial evolution for computer graphics,” Proc. SIG-
GRAPH, vol. 25, no. 4, pp. 319–328, 1991.

[17] J. Secretan, N. Beato, D. B. D’Ambrosio, A. Rodriguez, A. Campbell,
and K. O. Stanley, “Picbreeder: Evolving pictures collaboratively on-
line,” inProc. 26th Annu. SIGCHIConf. Human Factors Comput. Syst.,
New York, 2008, pp. 1759–1768.

[18] P. Machado and A. Cardoso, “Computing aesthetics,” in Proc.
Brazilian Symp. Artif. Intell., 1998, pp. 219–229.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by sim-
ulated annealing,” Science, vol. 220, pp. 671680–671680, 1983.

[20] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Conf. Neural Netw., 1995, pp. 1942–1948.

[21] M. Harman and B. F. Jones, “Search-based software engineering,” Inf.
Softw. Technol., vol. 43, pp. 833–839, 2001.

[22] P. McMinn, “Search-based software test data generation: A survey,”
Softw. Testing Verif. Reliab., vol. 14, pp. 105–156, 2004.

TOGELIUS et al.: SEARCH-BASED PROCEDURAL CONTENT GENERATION: A TAXONOMY AND SURVEY 185

[23] P. J. Bentley and S. Kumar, “The ways to grow designs: A comparison
of embryogenies for an evolutionary design problem,” in Proc. Genet.
Evol. Comput. Conf., 1999, pp. 35–43.

[24] G. S. Hornby and J. B. Pollack, “The advantages of generative
grammatical encodings for physical design,” in Proc. Congr. Evol.
Comput., 2001 [Online]. Available: http://demo.cs.brandeis.edu/pa-
pers/long.html#hornby_cec01

[25] K. O. Stanley, “Compositional pattern producing networks: A novel
abstraction of development,” Genet. Program. Evolvable Mach. (Spe-
cial Issue Develop. Syst.), vol. 8, no. 2, pp. 131–162, 2007.

[26] K. O. Stanley and R. Miikkulainen, “A taxonomy for artificial embryo-
geny,” Artif. Life, vol. 9, no. 2, pp. 93–130, 2003.

[27] F. Rothlauf, Representations for Genetic and Evolutionary Algo-
rithms. Heidelberg, Germany: Springer-Verlag, 2006.

[28] K. O. Stanley and R. Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evol. Comput., vol. 10, pp. 99–127,
2002.

[29] D. Ashlock, T. Manikas, and K. Ashenayi, “Evolving a diverse collec-
tion of robot path planning problems,” in Proc. Congr. Evol. Comput.,
2006, pp. 6728–6735.

[30] K. Deb, Multi-Objective Optimization Using Evolutionary Algo-
rithms. Hoboken, NJ: Wiley-Interscience, 2001.

[31] G. N. Yannakakis, “How to model and augment player satisfaction: A
review,” in Proc. 1st Workshop Child Comput. Interact., Chania, Crete,
Oct. 2008.

[32] G. N. Yannakakis and J. Togelius, “Experience-driven procedural con-
tent generation,” IEEE Trans. Affective Comput., 2011, to be published.

[33] E. Hastings, R. Guha, and K. O. Stanley, “Evolving content in the
galactic arms race video game,” in Proc. IEEE Symp. Comput. Intell.
Games, 2009, pp. 241–248.

[34] Lindenmayer, “Mathematical models for cellular interaction in devel-
opment parts I and II,” J. Theor. Biol., vol. 18, pp. 280–299, 1968.

[35] P. Prusinkiewicz, “Graphical applications of l-systems,” Proc. Graph.
Interface/Vis. Interface, pp. 247–253, 1986.

[36] V. Hom and J. Marks, “Automatic design of balanced board games,”
in Proc. AAAI Conf. Artif. Intell. Interact. Digit. Entertain., 2007, pp.
25–30.

[37] J. Mallett and M. Lefler, “Zillions of Games,” 1998 [Online]. Avail-
able: http://www.zillions-of-games.com

[38] J. Togelius and J. Schmidhuber, “An experiment in automatic game de-
sign,” in Proc. IEEE Symp. Comput. Intell. Games, 2008, pp. 111–118.

[39] C. Salge and T. Mahlmann, “Relevant information as a formalised ap-
proach to evaluate game mechanics,” in Proc. IEEE Conf. Comput. In-
tell. Games, 2010, pp. 281–288.

[40] D. Oranchak, “Evolutionary algorithm for generation of entertaining
shinro logic puzzles,” in Proc. EvoAppl., 2010.

[41] D. Ashlock, “Automatic generation of game elements via evolution,”
in Proc. IEEE Conf. Comput. Intell. Games, 2010, pp. 289–296.

[42] J. Togelius, R. De Nardi, and S. M. Lucas, “Making racing fun through
player modeling and track evolution,” in Proc. SAB Workshop Adapt.
Approach. Optimizing Player Satisfaction, 2006.

[43] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic person-
alised content creation in racing games,” in Proc. IEEE Symp. Comput.
Intell. Games, 2007, pp. 252–259.

[44] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player ex-
perience in Super Mario Bros,” in Proc. IEEE Symp. Comput. Intell.
Games., 2009, pp. 132–139.

[45] N. Sorenson and P. Pasquier, “Towards a generic framework for au-
tomated video game level creation,” in Proc. Eur. Conf. Appl. Evol.
Comput., 2010, vol. 6024, pp. 130–139.

[46] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a
feasible-infeasible two-population (fi-2pop) genetic algorithm for
constrained optimization: Distance tracing and no free lunch,” Eur. J.
Operat. Res., vol. 190, 2008.

[47] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph: A
model for dynamic level generation,” in Proc. Artif. Intell. Interact.
Digital Entertain., 2010.

[48] M. Frade, F. F. de Vega, and C. Cotta, “Evolution of artificial terrains
for video games based on accessibility,” in Proc. Eur. Conf. Appl. Evol.
Comput., 2010, vol. 6024, pp. 90–99.

[49] J. Togelius, M. Preuss, and G. N. Yannakakis, “Towards multiobjective
procedural map generation,” in Proc. FDG Workshop on Procedural
Content Generation, 2010.

[50] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and G. N.
Yannakakis, “Multiobjective exploration of the starcraft map space,”
in Proc. IEEE Conf. Comput. Intell. Games, 2010, pp. 265–272.

[51] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjec-
tive selection based on dominated hypervolume,” Eur. J. Oper. Res.,
vol. 181, no. 3, pp. 1653–1669, 2007.

[52] A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of sto-
chastic models,” Commun. ACM, vol. 25, no. 6, 1982.

[53] J. Olsen, “Realtime procedural terrain generation,” Univ. Southern
Denmark, Tech. Rep., 2004.

[54] J. Doran and I. Parberry, “Controllable procedural terrain generation
using software agents,” IEEE Trans. Comput. Intell. AI Games, vol. 2,
no. 2, pp. 111–119, Jun. 2010.

[55] L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular automata
for real-time generation of infinite cave levels,” in Proc. ACM Found.
Digit. Games., Jun. 2010.

[56] D. A. Ashlock, S. P. Gent, and K. M. Bryden, “Evolution of l-systems
for compact virtual landscape generation,” in Proc. IEEE Congr. Evol.
Comput., 2005, pp. 2760–2767.

[57] J. Juul, “Swap adjacent gems to make sets of three: A history of
matching tile games,” Artifact J., vol. 2, 2007.

[58] G. Frasca, “Ludologists love stories, too: Notes from a debate that
never took place,” in Proc. Level Up: Digit. Games Res. Conf., 2003.

[59] R. Aylett, J. Dias, and A. Paiva, “An affectively-driven planner for syn-
thetic characters,” in Proc. ICAPS, 2006.

[60] M. O. Riedl and N. Sugandh, “Story planning with vignettes:
Toward overcoming the content production bottleneck,” in Proc.
1st Joint Int. Conf. Interact. Digit. Storytelling, Erfurt, Germany,
2008, pp. 168–179.

[61] Y.-G. Cheong and R. M. Young, “A computational model of narrative
generation for suspense,” in Proc. AAAI Comput. Aesthetic Workshop,
2006.

[62] M. Mateas and A. Stern, “Facade: An experiment in building a fully-
realized interactive drama,” in Proc. Game Develop. Conf., 2003.

[63] M. J. Nelson, C. Ashmore, and M. Mateas, “Authoring an
interactive narrative with declarative optimization-based drama
management,” in Proc. Artif. Intell. Interact. Digit. Entertain.
Int. Conf., 2006.

[64] N. Wardrip-Fruin, Expressive Process.. Cambridge, MA: MIT Press,
2009.

[65] E. Hastings, R. Guha, and K. O. Stanley, “Neat particles: Design, rep-
resentation, and animation of particle system effects,” in Proc. IEEE
Symp. Comput. Intell. Games, 2007, pp. 154–160.

[66] E. J. Hastings and K. O. Stanley, “Interactive genetic engineering of
evolved video game content,” in Proc. FDG Workshop Procedural
Content Generat., 2010.

[67] A. Martin, A. Lim, S. Colton, and C. Browne, “Evolving 3d buildings
for the prototype video game subversion,” in Proc. EvoApplications,
2010.

[68] H. Takagi, “Interactive evolutionary computation: Fusion of the capac-
ities of EC optimization and human evaluation,” Proc. IEEE, vol. 89,
no. 9, pp. 1275–1296, Sep. 2001.

[69] P.Müller, P.Wonka, S. Haegler, A. Ulmer, and L. V. Gool, “Procedural
modeling of buildings,” ACM Trans. Graph., vol. 25, pp. 614–623,
2006.

[70] J. Golding, “Building blocks: Artist driven procedural buildings,” in
Proc. Present. Game Develop. Conf., 2010.

[71] M. Bokeloh, M. Wand, and H.-P. Seidel, “A connection between par-
tial symmetry and inverse procedural modeling,” in Proc. SIGGRAPH,
2010.

[72] P. Burelli and G. N. Yannakakis, “Combining local and global optimi-
sation for virtual camera control,” in Proc. IEEE Conf. Comput. Intell.
Games, Copenhagen, Denmark, Aug. 2010, pp. 401–403.

[73] P. Burelli and G. N. Yannakakis, “Global search for occlusion min-
imization in virtual camera control,” in Proc. IEEE World Congr.
Comput. Intell., Barcelona, Spain, Jul. 2010, pp. 2718–2725.

[74] G. N. Yannakakis, H. P. Martínez, and A. Jhala, “Towards affective
camera control in games,” User Model. and User-Adapted Interact.,
vol. 20, no. 4, pp. 313–340, 2010.

[75] J. O. Talton, D. Gibson, L. Yang, P. Hanrahan, and V. Koltun, “Ex-
ploratory modeling with collaborative design spaces,” ACM Trans.
Graph., vol. 28, 2009.

[76] K. Compton, “Remarks during a panel session at the FDG workshop
on PCG,” 2010.

[77] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu, T.
Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi, G.
Smith, and R. Baumgarten, “The 2010 Mario AI Championship: Level
Generation Track”.

186 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

[78] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proc. FDG Workshop Procedural Content Generation,
2010.

Julian Togelius received the B.A. degree in phi-
losophy from Lund University, Lund, Sweden, in
2002, the M.Sc. degree in evolutionary and adaptive
systems from University of Sussex, Sussex, U.K.,
in 2003, and the Ph.D. in computer science from
University of Essex, Essex, U.K., in 2007.
He is currently an Assistant Professor at the IT

University of Copenhagen (ITU), Copenhagen,
Denmark. Before joining the ITU in 2009, he was
a Postdoctoral Researcher at IDSIA in Lugano. His
research interests include applications of computa-

tional intelligence in games, procedural content generation, automatic game
design, evolutionary computation, and reinforcement learning; he has around
50 papers in journals and conferences about these topics.
Dr. Togelius is an Associate Editor of the IEEE TRANSACTIONS ON

COMPUTATIONAL INTELLIGENCE AND AI IN GAMES and is the current Chair of
the IEEE CIS Technical Committee on Games.

Georgios N.Yannakakis received the five-year Dipl.
degree in production engineering and management
and the M.Sc. degree in financial engineering from
the Technical University of Crete, Crete, Greece, in
1999 and 2001, respectively, and the Ph.D. degree in
informatics from the University of Edinburgh, Edin-
burgh, U.K., in 2005.
He is currently an Associate Professor at the IT

University of Copenhagen, Copenhagen, Denmark.
Prior to joining the Center for Computer Games
Research, ITU, in 2007, he was a Postdoctoral

Researcher at the Mærsk Mc-Kinney Møller Institute, University of Southern
Denmark. His research interests include user modeling, neuroevolution, com-
putational intelligence in computer games, cognitive modeling, and affective
computing, emergent cooperation and artificial life. He has published around
60 journal and international conference papers in the aforementioned fields.
Dr. Yannakakis is an Associate Editor of the IEEE TRANSACTIONS ON

AFFECTIVE COMPUTING and the IEEE TRANSACTIONS ON COMPUTATIONAL

INTELLIGENCE AND AI IN GAMES, and the Chair of the IEEE CIS Task Force
on Player Satisfaction Modeling.

Kenneth O. Stanley received the B.S.E. degree from
the University of Pennsylvania, University Park, in
1997 and the Ph.D. degree from the University of
Texas at Austin, Austin, in 2004.
He is currently an Assistant Professor in the

Department of Electrical Engineering and Computer
Science at the University of Central Florida, Or-
lando, FL. He is an inventor of the Neuroevolution of
Augmenting Topologies (NEAT) and HyperNEAT
algorithms for evolving complex artificial neural
networks. His main research interests are neuroevo-

lution (i.e., evolving neural networks), generative and developmental systems,
coevolution, machine learning for video games, and interactive evolution.
Dr. Stanley is an Associate Editor of the IEEE TRANSACTIONS ON

COMPUTATIONAL INTELLIGENCE AND AI IN GAMES and on the editorial board
of the Evolutionary Computation Journal. He has won best paper awards for
his work on NEAT, NERO, NEAT Drummer, HyperNEAT, novelty search, and
Galactic Arms Race.

Cameron Browne received the Ph.D. degree in com-
puter science from the Faculty of Information Tech-
nology, QUT, Brisbane, Australia, in 2008.
He is currently a Research Fellow in the Computa-

tional Creativity Group at Imperial College London,
London, U.K. His research interests include the ap-
plication of MCTSmethods to creative domains such
as game design, art, and music.
Dr. Browne was Canon Research Australia’s In-

ventor of the Year for 1998 and won the QUT Deans
Award for Outstanding Thesis of 2008.

