
1

Procedural Content Generation for Games: A Survey
MARK HENDRIKX, SEBASTIAAN MEIJER, JOERI VAN DER VELDEN, and ALEXANDRU IOSUP
Delft University of Technology, the Netherlands

Hundreds of millions of people play computer games every day. For them, game content–from 3D objects to abstract puzzles–

plays a major entertainment role. Manual labor has so far ensured that the quality and quantity of game content matched the

demands of the playing community, but is facing new scalability challenges due to the exponential growth over the last decade
of both the gamer population and the production costs. Procedural Content Generation for Games (PCG-G) may address

these challenges by automating, or aiding in, game content generation. PCG-G is difficult, since the generator has to create the
content, satisfy constraints imposed by the artist, and return interesting instances for gamers. Despite a large body of research

focusing on PCG-G, particularly over the past decade, ours is the first comprehensive survey of the field of PCG-G. We first

introduce a comprehensive, six-layered taxonomy of game content: bits, space, systems, scenarios, design, and derived. Second,
we survey the methods used across the whole field of PCG-G from a large research body. Third, we map PCG-G methods

to game content layers; it turns out that many of the methods used to generate game content from one layer can be used to

generate content from another. We also survey the use of methods in practice, that is, in commercial or prototype games. Fourth
and last, we discuss several directions for future research in PCG-G, which we believe deserve close attention in the near future.

Categories and Subject Descriptors: A.1 [General Literature] Introductory and Survey; K.8.0 [Personal Computing]: Gen-
eral—Games; I.2.4 [Computing Methodologies]: Knowledge Representation Formalisms and Methods—Representations, pro-
cedural; Representations, rule-based; H.4.0 [Information Systems Applications] General

General Terms: Theory, Design, Standardization, Algorithms

Additional Key Words and Phrases: game content generation, procedural, survey

ACM Reference Format:
Hendrikx, M., Meijer, S., van der Velden, J., and Iosup, A. 2011. Procedural Game Content Generation: A Survey. ACM Trans.
Multimedia Comput. Commun. Appl. -, -, Article 1 (February 2011), 24 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Computer games are increasingly present in our lives. Every day, hundreds of millions of players
around the world are entertained by games such as FarmVille, World of Warcraft, Call of Duty, The
Sims, and StarCraft. The US Entertainment Software Association (ESA) reports [ESA 2010] that, in
2009, over 68% of the American households play computer or video games; inside these households,
the average game player age is 35, and the average experience with computer or video games is 12
years. The same ESA reports show a growing use of computer games in US households, over the past

Author’s address: A. Iosup, Mekelweg 4, 2628CD, Delft, the Netherlands.
Email: A.Iosup@tudelft.nl (Corresponding author.)
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2011 ACM 1551-6857/2011/02-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:2 • M. Hendrikx et al.

decade. Game content is an important factor in keeping players engaged in gaming worlds. We take
for granted the ability of computer games to present players with engaging content, but demand for
new and even player-customized content keeps increasing while manual content production is already
expensive [Takatsuki 2007] and unscalable [Iosup 2011]. In contrast to manual content production,
Procedural Content Generation for Games (PCG-G) is the application of computers to generate game
content, distinguish interesting instances among the ones generated, and select entertaining instances
on behalf of the players. PCG-G is difficult: generating most types of game content requires from
a computer not only computational power, but also the ability to judge the technical and cultural
values of the generated instances. It is not surprising that, despite over three decades of research and
development, the community has yet to design a general-purpose procedural game content generator.
In this article we conduct a systematic survey of PCG-G techniques and their application in practice.

The most popular commercial games get larger, prettier, more atmospheric, and more detailed with
each generation. For example, the massively multiplayer online role-playing game (MMORPG) World
of Warcraft (WoW) immerses its players into a virtual fantasy world of great complexity. Each of the
two main continents in this world is about the size of Manhattan and includes a detailed landscape,
a diverse ecosystem, complex renditions of medieval towns, and a comprehensive road network. The
game features many types of content, such as sound, textures, terrains, buildings, cities, object behav-
ior, and game scenarios. In total, WoW was comprised in 2008 [ComplexityGaming.com 2008] of over
1,400 interesting geographic locations, 30,000 items, 5,300 interactable creatures, 7,600 quests, and
2,000,000 words of text; this content was produced during almost five years of development.

Today, the production of high-quality commercial games may require the work of a few hundred peo-
ple, including artists, designers, programmers, and audio engineers, many of whom work on producing
game content. As a consequence, content production has grown to the point at which it has become a
bottleneck in both game budgets and product time-to-market [Kelly and McCabe 2007; Lefebvre and
Neyret 2003; Smelik et al. 2009; Iosup 2009]. In the early-to-mid-1990s, the successful game develop-
ment company id created popular commercial games such as Commander Keen, Wolfenstein 3D, and
Doom with a single full-time content developer in a team of five-six [Kushner 2003]. In the early 2000s,
game production teams already employed hundreds of people, albeit only some for the entire duration
of the project [Krueger et al. 2005]. An increasing growth trend for both production cost and team size
with time was observed as early as 2005 [Krueger et al. 2005]. The actual production budgets remain
unknown for many of the popular commercial games, but educated guesses place the budgets of con-
temporary games such as WoW at $20,000,000–$150,000,000 [Johnson 2006; Reynolds 2010b; Video
Game Sales Wiki 2009].Anecdotal evidence suggests an increase in the fraction of the game produc-
tion costs spent on generating content, toward 30-40% of the game budget [Irish 2005, p.231] [Irish
2005, p.281] [Elas 2010]. Apart from the cost, finding qualified people has become a major problem as
early as 2005 [Krueger et al. 2005], even when considering the global workforce [Fields 2010, p.99].
Fast-growing production costs have already been at least partially responsible for the dissolution of
once successful game companies such as Interplay1 and Factor 5. Ultimately, the current situation of
game content production means that fresh content cannot be not produced anymore at the rate and
player-customization that gamers would want, and for the cost that would keep games affordable for
their current gamer communities.

1In 2006, Interplay tried to secure $75,000,000 in funding for developing “Fallout MMOG” (http://www.sec.gov/Archives/
edgar/data/1057232/000117091806001092/presentation.htm). A few years later, while nearing bankruptcy, Interplay cites as
a major advantage of the competition the “substantial libraries of available content” (http://sec.gov/Archives/edgar/data/
1057232/000143774911003556/interplay_10k-123110.htm). This advantage hinges not only on licenses and intellectual prop-
erty rights, but also on “the uncertainties associated with the interactive entertainment software development process” (ibid.),
including the development of “engaging content, vivid graphics and rich sound” (ibid.)

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

Procedural Content Generation for Games: A Survey • 1:3

Procedural techniques are an alternative to making complex game worlds in a limited amount of
time without putting a large burden on the game content designers. The main idea behind procedu-
ral content generation is that game content is not generated manually by human designers, but by
computers executing a well-defined procedure. To avoid losing control over the design process, it is
desirable that artists and designers can still influence the final product by adjusting the parameters
of the procedure.

Following three decades of research, there exist today many methods for procedurally generating
many types of game content. One of the simplest and earliest approaches to procedural game con-
tent generation is based on pseudo-random number generation (PRNG). The space exploration game
Elite used this approach in the 1980s to generate a very large universe. A similar approach can be
used to generate textures for game objects [Perlin 1985]. The Demoscene, a loose community of artists
and coders, has used procedural techniques since the mid-1980s to create vast virtual environments
with small disk space requirements. The game “.kkrieger” [Farbrausch Prod. 2006] is a 3D first-person
shooter, similar in genre to Halo 3 (a $20,000,000-plus budget game). Having Demoscene-like goals,
“.kkrieger” uses procedural techniques to generate textures, meshes, and sounds that are used to cre-
ate a complex, immersive game. This game requires under 100 KB of disk storage—three-four or-
ders of magnitude less than a similar game. Can the techniques employed by “.kkrieger” be used by
other games? What other techniques can be used to generate the content present in “.kkrieger”? Re-
search such as 3D model streaming [Mondet et al. 2009] may benefit from the techniques employed by
“.kkrieger”, and vice-versa. Other content generation techniques focus on stochastic outcome [Ashlock
2010a; Edwards 2011], rather than the deterministic outcome present in Elite and “.kkrieger”; yet
other [Chen et al. 2008; Smith et al. 2010; Smelik et al. 2010] focus and on human-aided content
generation.

Despite an abundance of PCG-G techniques, their application in commercial products is not main-
stream. PCG-G methods have been successfully applied to generate many game content types (see
Section 2), but the existing solutions are not general-purpose. The literature on procedural game con-
tent generation is scattered across numerous disciplines (computer graphics, image processing, artifi-
cial intelligence, computer-human interfaces, psychology, linguistics, social sciences, ludology, etc.) and
publication venues. In this sense, PCG-G can be seen as a driver of science, and in particular of com-
puter science. We found relevant material for our survey in IEEE Trans. on Visualization and Com-
puter Graphics, ACM Trans. on Graphics, ACM Trans. on Multimedia Computing, Communications
and Applications, IEEE Trans. on Computational Intelligence and AI in Games, the J. of Visualization
and Computer Animation (recently renamed Computer Animation and Virtual Worlds), the Int’l. Conf.
on Game Design and Technology, the IEEE Conf. on Computational Intelligence and Games, the ACM
Int’l. Conf. on Foundations of Digital Games, the Artificial Intelligence and Interactive Digital Enter-
tainment Conference, the Int’l. Workshop on Procedural Content Generation in Games, etc. While there
currently exists no textbook on the subject of general procedural game content generation, we point out
one book [Ebert et al. 2002] and two surveys [Kelly and McCabe 2006; Smelik et al. 2009]. Ebert et al.
introduce a variety of methods for procedural generation of textures and materials, including methods
for noise, solids, gases, fire, water, earth, and cloud generation. Kelly and McCabe survey techniques
for procedurally generating cities, focusing on the generation of cityscapes, individual buildings, and
road networks. They analyze for five procedural city generation methods the realism, the scale, and
the variation of the generated content. Last, they introduce and use several evaluation criteria for
user-control and efficiency in procedural city generation. Smelik et al. survey procedural generation
of terrain and urban environments. They investigate over 50 papers that address the generation of
terrain elevation, bodies of water, road networks, and urban environments. It is symptomatic for the
state of the field that there exists no structural overlap in these two surveys, despite the topical overlap

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:4 • M. Hendrikx et al.

Fig. 1. Types of game content that can be procedurally generated. The numbers in each box refer to the subsection
dedicated to the content type in Sections 2 (definition) and 4 (application of procedural generation methods).

and time difference between them. Structuring the entire field of research in procedural game content
generation is the main goal of this work.

In this work we survey the methods used for procedurally generating game content for whole spec-
trum of game content types, with an emphasis on the methods that have already found their way
and have been demonstrated to be useful in commercial applications, and on new trends and ideas.
In Section 2 we present several game content types, including game bits, game space, game systems,
game scenarios, and game rules. We introduce a taxonomy of general PCG-G methods, which, for rea-
sons of space, we summarize in Section 3 and detail in Appendix A. In Section 4 we survey various
applications of PCG-G methods, by game content type, and map these applications to our taxonomy
of methods. Finally, we provide recommendations for future research in Section 5, and conclude in
Section 6.

2. WHAT’S IN A GAME?
In this section we review six main classes of game content that can be generated procedurally. In
addition to classes of content present strictly inside games, we consider derived content, that is, content
derived from the content or the state of a game with the goal of immersing the player further into the
game world. We structure the six classes as a virtual pyramid, in which classes of content closer to the
top may be built with elements from the classes closer to the bottom. An overview of the pyramid is
depicted in Figure 1.
2.1 Game Bits
Game bits are elementary units of game content, which typically do not engage the user when con-
sidered independently. We distinguish among game bits the concrete and abstract bits: concrete bits
such as trees can be items to be interacted with in the simulated world, whereas abstract bits, such as
textures and sound, need to be combined to produce a concrete bit. We identify in this survey six main
types of game bits, which we describe in turn.

2.1.1. Textures (Abstract) are images used in games for adding detail to geometry and models, and
for giving a visual representation to game elements such as menus. Textures often define the art style
of a game. Often, the texture has to additionally represent the material of the object and the way
the environment is reflected on, by, and through the material. Stimulated by the degree of skill and
amount of work necessary to produce realistic textures—shading and material representation have
often formed the advanced part of drawing courses for the past 50 years [Loomis 1951; Edwards 1989;
Hillberry 1999]—many games now use artists only for contour generation and difficult to generate
materials, and procedural techniques for most general and material-specific textures.

2.1.2. Sound (Abstract) has an important function within games [Bartle 2003]; for example, music
is used to set game atmosphere and pace, and sound effects are used to give feedback to the player on
actions and environment change. Current game production relies mainly on pre-recorded sound clips
that are triggered by game events [Manocha et al. 2009, p.160], which would be akin to the use of
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

Procedural Content Generation for Games: A Survey • 1:5

video clips instead of visual object representations, a decade ago. There is considerable resistance to
algorithmic compositions from musicians and the general public [Edwards 2011], but when it comes
to procedural generation, the importance of computational thinking about sound can not be ignored.
However, pre-recording under financial constraints leads to several limitations, including unrealistic
sounds due to unexpected or complex scene configurations.

2.1.3. Vegetation (Concrete) is used in many games for a more realistic and thus immersive look. For
example, trees can cover the ridge of a mountain and reed can be found along river banks. The presence
of vegetation is not merely aesthetic; it may serve as hiding place or raw material for inventive players,
and clarify the climate in which the player operates and thus lead to changes in gameplay.

2.1.4. Buildings (Concrete) are essential to represent urban environments in games. Even more so
than for vegetation, buildings have special meaning to players and often influence gameplay—players
often plan their game activities in relation with buildings, for example by ending resource collection
activities closer to warehouses or marketplaces. Modern game buildings need to be diverse yet be-
long to a unitary architectural style; even fictional environments such as World of Warcraft’s require
interesting and believable buildings to maintain immersion.

2.1.5. Behavior (Abstract) is the way in which objects interact with each other and the environment,
for example by breaking or exploding when hit. The behavior of objects makes a game more lively and
interesting. Procedural behavior is often employed in games to create the illusion of complexity; in
response, players may find creative ways to bend or use object behavior.

2.1.6. Fire, Water, Stone, and Clouds (Concrete) are often used in games to create a more believable
world. In early games, the role of these elements of nature was purely decorative, and only textures
and sounds were necessary for this type of content. However, recent advances in computation and
modeling [Ebert et al. 2002; Dorsey and Rushmeier 2009] have made more common the use of detailed,
realistic, and interactive representations of these elements.
2.2 Game Space
The game space is the environment in which the game takes place, and is partially filled with game bits
among which players navigate. Game space can be defined in both concrete and abstract ways [Nitsche
2009]. Concrete spaces are closely related to the way humans perceive locus; they can be forests, mazes,
plains, etc. The board in chess is an example of abstract game spaces. The game space plays a major role
in creating an interesting game, as players often construct their interpretation of the game starting
from the game space [Nitsche 2009]. We identify three main types for this game content type:

2.2.1. Indoor Maps (Abstract or Concrete) are depictions of the structure and relative positioning of
indoor space partitioned into rooms. Rooms may be interconnected by corridors, overlapped in layers
interconnected by stairs, and grouped altogether in dungeons. Another form of indoor maps are caves,
which can have varying and unusual geometry. Yet another form of indoor maps focuses on human-like
buildings, where the position and size of rooms, and sometimes their content, are important. The game
genre Multi-User Dungeons (MUDs), the ancestor of today’s popular MMORPGs, is a type of game
in which indoor map navigation is central to gameplay. The platform game Prince of Persia, which
is set inside a multi-leveled dungeon, is one of the few to make extensive use of indoor maps. Indoor
maps can be abstract or concrete; the puzzle game Sokoban depicts the indoor map of an abstractized
warehouse.

2.2.2. Outdoor Maps (Abstract or Concrete) are depictions of the elevation and structure of an out-
door terrain. It is common for games with outdoor maps to also have indoor maps; due to important
technological differences in the representation and rendering of outdoor and indoor maps, the transi-
tion between the two is often made discrete. For example, World of Warcraft has large outdoor areas
and numerous indoor areas; players transition between them through the use of special entrance areas
and teleportation portals. Many commercially-successful platformer games, such as Nintendos Super

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:6 • M. Hendrikx et al.

Mario World and Number None Inc.’s Braid, make extensive use of outdoor, albeit stylized, maps; other
platform games, such as the Commander Keen series, mix outdoor and indoor maps. Outdoor maps can
be abstract or concrete; the board in chess depicts a kingdom.

2.2.3. Bodies of Water (Concrete) such as rivers, lakes, and seas are often used as map obstacles or
even as interactive game space. Other map features (abstract or concrete), such as teleportation areas,
etc. (abstract) and mountains, ridges, ravines, grottoes, etc. (concrete) may also be part of game space.

2.3 Game Systems
The use of complex systems theory and modeling to generate or simulate parts of a game is not un-
common. Game systems can either be abstract, for example systems defining the relationship between
vegetation and the features of the outdoors maps, or concrete, such as simulations of cities and net-
works of cities. The use of game systems can make games more believable and thus appealing. Many
systems used in games are similar to textbook complex systems and models [Alexander 1977; Strogatz
1994; Edelstein-Keshet 2005].

2.3.1. Ecosystems (Abstract or Concrete) govern the placement, evolution, and interaction of flora and
fauna through algorithms and rules. The designers of Ultima Online, a game which established the
game genre of MMORPG [Loguidice and Barton 2009], focused on generating large ecosystems that
included complex food chains [Barron 1999, p.21] [Bartle 2003, Ch.4].

2.3.2. Road Networks (Abstract or Concrete) form the basic structure of an outdoors map, serving
different purposes such as transportation between points of interest, and structuring of and trans-
portation within cities. The main difficulties in generating road networks are finding the right balance
between randomness and structure, and conveying the view of the game designer about places of in-
terest, such as remoteness (through interrupted roads), difficulty (labyrinthine roads), and importance
(broader roads).

2.3.3. Urban Environments (Abstract or Concrete) are large clusters of buildings where many people
live together and interact with their surroundings. Realistic cities take centuries to grow, and evolve
by influence of the people that live there. Procedural algorithms often take a different approach by first
generating the road networks, then dividing the terrain between the roads in building lots, and at last
generating buildings on these lots. The realism of these generated cities can be improved by applying
effects like erosion caused by people and weather.

2.3.4. Entity Behavior (Abstract) Many types of complex player-environment interaction need to be
possible to make the player experience that a virtual world is life-like. Entities such as non-playable
characters (NPC) that interact with the player are a powerful tool to achieve this illusion. Procedurally
generating entity behavior based on player action and interaction has the potential to create immer-
sive and realistic experiences. Not only player interaction requires complex entity behavior. Group
movement patterns are examples where procedural algorithms could achieve more realistic results.

2.4 Game Scenarios
Game scenarios describe, often transparently to the user, the way and order in which game events
unfold. Two types of game scenarios can be distinguished, abstract and concrete. The abstract game
scenarios describe how other objects inter-relate. The concrete game scenarios are explicitly presented
in the game, for example as part of the game narrative.

2.4.1. Puzzles (Abstract) are problems to which the player can find a solution based on previous
knowledge or by systematically exploring the space of possible solutions embedded in the problem [Colton
2002]. For puzzles, the process of finding the solution is the game and thus a rewarding experience.
Many quests present in commercial games may be expressed as a sequence or graph of puzzles. Ex-
amples of puzzles are riddles, crosswords, and chess endings. The size of the solution space and the
previous experience of the player largely determine the difficulty of a puzzle.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

Procedural Content Generation for Games: A Survey • 1:7

2.4.2. Storyboards (Abstract/Concrete) are design aids for the game developer or player. Storyboards
are often presented as comics, with sequential panels describing scene events through a visual/textual
hybrid. Storyboards can also be used to entertain and guide players, for example through cut-scenes
interleaved with normal gameplay. Depending on how they are produced and used, storyboards may
also be an example of derived content (see Section 2.6 and 4.6).

2.4.3. The Story (Abstract/Concrete) of a game is often key in creating a good gaming experience.
It keeps the player motivated, presents a logical basis for the events that unfold in the game, and
provides a goal for the player to accomplish. Besides revelation through cut-scenes and quests, the
game story may be embedded entirely in the game universe. Albeit rare in commercial games, perhaps
mostly in text-based adventures such as Skoto’s Castle Marrach and in artistic games such as Façade,
story-intensive quests may not be easily represented as graphs of individual puzzles; for these quests,
the dramatic arc plays an important role.

2.4.4. The concept of Levels (Abstract/Concrete) is used in nearly every game as a separator between
gameplay sequences. For example, a level in a platform game, such as Nintendo’s Super Mario World
and Donkey Kong Country, and Sony’s Sony the Hedgehog, would consist of a separate, playable game
space in which the player may be required to move from the start to the end position through a series of
movements on and jumps to/from platforms, while completing (optional) tasks and avoiding obstacles.
2.5 Game Design
The design of a game is comprised of content such as rules (what can be done in the game?) and goals
(what is the player trying to achieve?); an aesthetic component, such as a dramatic arc or a graphical
theme, are also important elements in design [Norman 2002]. A game can be seen as an instance of a
game design, in which the parameters of the rules and of the goal have been set. A game design can
refer to game content of all the types described in Section 2, including the recursive reference to other
game design content. Game design can be complemented by (semi-)automatic game generation or by
providing tools that help the designer convert ideas into game design content.

2.5.1. The System Design (Abstract) of a game entails “the creation of mathematical patterns un-
derlying the game and game rules” [Brathwaite and Schreiber 2008]. An example of generating game
rules is the generator by [Pell 1993] which generates symmetric, chess-like games. One of the main
challenges in system design generation is ensuring that the rules are balanced between all players.

2.5.2. The World Design (usually Concrete) of a game is “the design of a setting, story, and theme” [Brath-
waite and Schreiber 2008]. An example includes the generation of novel games based on beforehand
unknown story structures by [Hartsook et al.].
2.6 Derived Content
We define derived content as content that is created as a side-product of the game world. Doing this
can greatly increase the feeling of immersion the player has with the game world, as players record
their in-game experiences for review inside or outside the game; this “game beyond the game” [Garfield
2000] was the basis of the “metagame” notion (ibid.)

2.6.1. News and Broadcasts (Concrete) A game may show its players news items based on their
actions and other changes in the game’s universe; the same news items could then be presented as
television broadcasts and newspaper articles. Similarly, game sessions may be broadcasted—a popular
part of television schedules in Asia [Rossignol 2008, Ch.2] and, more recently, US and Europe.

2.6.2. Leaderboards (Abstract)—player ranking tables—are popular for a variety of game genres and
are used by fan-sites to serve millions of players [Iosup et al. 2010].

3. A TAXONOMY OF METHODS FOR PROCEDURAL CONTENT GENERATION
The usefulness of our survey depends partially on the existence of a set of methods for PCG-G that can
be used to generate content across the different content types introduced in Section 2. These methods,

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:8 • M. Hendrikx et al.

Fig. 2. Taxonomy of common methods for generation game content. The label in each box (such as “A.1” in the
“Pseudo-Random Number Generator” box, at the top) refers for each method to its section in Appendix A.

which we call fundamental, could then be part of a generic content generator, and our survey could
help alleviate overlapping efforts in this direction.

We identify five groups of methods for PCG-G, which we summarize in this section and discuss in
Appendix A. An overview of the fundamental methods discussed in this work is depicted in Figure 2.
The methods are grouped in classes such as Pseudo-Random Number Generators (PRNG), Generative
Grammars (GG), Image Filtering (IF), Spatial Algorithms (SA), Modeling and Simulation of Complex
Systems (CS), Artificial Intelligence (AI), etc. We show in Section 4 how methods belonging to these
groups can be used across different content types.
4. A SURVEY OF PROCEDURAL CONTENT GENERATION FOR GAMES
In this section we survey the state-of-the-art and use of PCG-G techniques. We focus, in turn, on each
of the six game content types introduced in Section 2. For each game content type, we begin with the
techniques discussed in Appendix A, then look at other PCG-G techniques.
4.1 Game Bits

4.1.1 Textures. can be generated procedurally through a variety of techniques, including PRNG, IF,
SA, and CS techniques. Perlin noise and other PRNG-based techniques are commonly used for texture
generation. Noise-generated textures can be mapped easily on complex objects, unlike raster 2D im-
ages. The implementation of noise is relatively simple, and is present in many software shaders and
hardware graphics cards, such as NVIDIA’s. Pattern-based procedural texturing is an IF-based tech-
nique to imitate the level of detail that a large resolution texture can provide [Lefebvre and Neyret
2003]; this technique also requires a procedural algorithm for breaking the regularity of the pattern,
without putting limitations on the mesh. Convolution filters such as sharpening or smoothing can
improve game textures, even dynamically. SA techniques such as tiling and layering are common in
games; their small computational and memory requirements lead to their adoption by many commer-
cial RTS games. To imitate different ornamental styles, geometric decorative patterns can be devel-
oped using a range of mathematical algorithms [Whitehead 2010]. From the artificial intelligence (AI)
techniques, Genetic Algorithms have been used [Sims 1991] to generate textures procedurally. Chro-
mosomes describe texture-generating functions, such as noise, as expression trees. Crossover occurs
by combining branches from the expression trees. The fitness of a gene (texture) is evaluated against
a goal set by the user.

4.1.2 Sound. Procedural sound can be used for most types of sound [Farnell 2007], for example
through PRNG, CS, and GG techniques. A variety of procedural techniques for generating sound, in-
cluding GG, CS, AI, and mathematics have been surveyed by [Edwards 2011]; some of them date from
the 1950s and 60s. CS techniques have been used to generate sound corresponding to different level
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

Procedural Content Generation for Games: A Survey • 1:9

of detail by simulating sound attenuation [Farnell 2007] or propagation through a liquid [Moss et al.
2010]. Procedural sound can be obtained using GG techniques like a context-free language [Smith,
Adam M. 2009] or other rule-based systems [Farnell 2007] specified by a composer or sound modeler.

4.1.3 Vegetation. Real vegetation is often self-similar or has a structure. Thus, vegetation can be
procedurally modeled [Kelly and McCabe 2006] using GG, SA, and CS techniques. For example, self-
similar plants such as ferns and cauliflower can be generated using fractals, and L-systems can be
used to model non-self-similar vegetation–symbols may represent plant parts such as the trunk or a
leaf, and rules may determine the “growth” of the plant from the initial trunk. An advanced GG-based
technique that uses a graph of GGs can be used to generate complex vegetation [Deussen and Linter-
mann 1999]. A complex system based on plant growth under weather was used [Weber and Penn 1995]
to generate realistic trees. Genetic Algorithms have been used [Sims 1991; Reynolds 2010a] to gener-
ate vegetation procedurally, similarly to texture generation. SpeedTree is an example of commercial
software [Re et al. 2009] to generate vegetation.

4.1.4 Buildings. Procedural generation of buildings aims at generating many different buildings
from a limited set of rules or user-generated content. GG techniques have been used to generate build-
ings. For example, the extended L-systems used by CityEngine [Parish and Müller 2001] starts from
a symbol representing a bounding box for the building, then iteratively transforms the current build-
ing or generates new buildings; the generated buildings belong to the same architectural style. Split
grammars [Wonka et al. 2003] and shape grammars [Müller et al. 2006] have been similarly used to
generate buildings.

Building floor plans can be procedurally generated using PRNG techniques. A simple process based
on floor plans that are extruded upwards can be used [Kelly and McCabe 2007] for real-time building
generation. Similar yet more realistic buildings have been generated [Greuter et al. 2003] by randomly
changing and merging bi-dimensional polygons, and by extruding the resulting polygons upwards.

4.1.5 Behavior. The behavior of many game objects, such as fireworks or a patches of wheat, is
determined by both the object characteristics and its surroundings. This behavior can be procedurally
modeled by, for instance, using GG and CS techniques. From the GG techniques, context-sensitive
L-systems, which differ from ordinary L-systems in the ability to represent and manipulate context-
dependent variables as symbols, can be used [Hidalgo et al. 2008] to specify complex object behavior
such as the explosion of fireworks without a full physical model. Ordinary L-systems and cellular
automata can be used to generate plants in a soil patch. The game Galactic Arms Race uses genetic
algorithms [Hastings et al. 2009] to adapt the player’s weapons to play style, over time.

4.1.6 Fire, Water, Stone, and Clouds. The procedural generation of a variety of complex elements,
in particular fire, water, stone, and clouds, has received much attention in the past [Ebert et al. 2002;
Dorsey and Rushmeier 2009]. For brevity, we focus here on the procedural generation of clouds. Perlin
noise and other PRNG techniques, and IF and CS techniques can be used [Roden and Parberry 2005]
to generate realistically looking sky.
4.2 Game Space

4.2.1 Indoor Maps. Procedurally-generated dungeons were introduced early in Multi-User Dun-
geons (MUD) games—the open-source MUD Angband had them in 1992 [Doull 2007a]. Inside the
dungeons, mazes were generated using a wide variety of algorithms, mainly based on PRNG and CS
techniques [Pullen 2011]. Sangband, an Angband variety, uses PRNG-based techniques to generate
mazes and rooms. Gonzalez introduced a fractal-based algorithm for generating caves for NPPAng-
band, another Angband variant. Large caves can be generated using CS techniques such as cellular
automata [Johnson et al. 2010a], as was done in NPPAngband [Babcock 2005; Johnson et al. 2010b]. A

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:10 • M. Hendrikx et al.

much more advanced dungeon generation algorithm, which combines PRNG and GG techniques and
also generates other game content types, has been proposed [Adams 2002].

Because of their lax spatial constraints, MUD space generation techniques may not be useful for gen-
erating realistic indoor spaces. The combination of PRNG and GG techniques for generating building
indoors–through a graph of rooms where the graph is generated using a GG technique, and each room
is generated through PRNG techniques–has been proposed [Martin 2006] instead. Other techniques,
notably general PRNG combined with advanced parameter space search such as genetic algorithms,
have been proposed [Togelius et al. 2010; Frade et al. 2010; Sorenson and Pasquier 2010] for generating
indoor space with constraints.

Many outdoor maps rely on a grid-based structure, for example a height map–a matrix where each
cell represents the height of the terrain. Many height map generation algorithms based on PRNG, IF,
SA, and CS techniques have been described extensively [Ebert et al. 2002; Smelik et al. 2009]. Digital
elevation models [Smelik et al. 2009] combine the SA technique of grid subdivision with the use of real
data—the terrain is subdivided into regions having each an elevation profile, then digital elevation
models of real-world terrain that match the elevation profile of the region are used to create a new,
realistic height-map.

4.2.2 Outdoor Maps. Different approaches have been suggested to give the designer finer control of
the produced environments. Declarative modeling and procedural sketching [Smelik et al. 2010] allow
the designer to efficiently create assets while staying within an interactive workflow. Terrain synthesis
using procedural brushes allow for local control, up to full automatic terrain generation [de Carpentier
and Bidarra 2009]. Software agents are another technique for creating different types of terrain while
leaving the designer in control [Doran and Parberry 2010].

4.2.3 Bodies of Water and Other Map Features. Map features such as mountains and sea shores
are important to players, and have led to the development of specific procedural generation techniques.
Among these features, we focus in this survey on bodies of water; although mountains may be another
feature of interest, in contrast to water they are usually un-traversable map features.

Procedural generation of bodies of water, such as rivers, lakes, and oceans, is often done during or
directly after the generation of the outdoor height map. The shape of the river or sea is either deter-
mined by the height map (for example, water starts in mountains and follows the elevation gradient),
or the water shapes the height map [Smelik et al. 2009]. The generation of lakes and oceans is usu-
ally done after height-map generation by a flooding algorithm, which “floods” the terrain starting from
the lowest point, or by simply setting the water level to a specific height–all heights below the water
threshold are considered to be under water. SA techniques [Prusinkiewicz and Hammel 1993] and CS
techniques that model true water flow and erosion [Clyde 2004] have also been used.
4.3 Game Systems

4.3.1 Ecosystems. Using CS techniques, an ecosystem can be modeled [Flake 1999] as a producer
and consumer system, in which multiple producers and consumers interact in cooperative and com-
petitive ways. Complex behavior can be modeled to represent the interaction between members of
the same species; when multiple species exist, the inter-species interaction obeys much simpler rules.
Thus, for multiple species CS and PRNG techniques may be combined for more variation. [Deussen
et al. 1998] and [Hammes 2001] have developed ecosystem simulation algorithms to generate vege-
tation placement maps, which combine an ecosystem with game space information. The algorithm of
Deussen et al. is iterative, with plants competing with each other for resources to mimic evolution
at each pass of the algorithm; the computational complexity of this algorithm makes it unusable for
real-time generation of ecosystems [Smelik et al. 2009]. Hammes uses a single-pass algorithm, which
first determines the areas in which plants are to be placed, and then places plants randomly in these
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

Procedural Content Generation for Games: A Survey • 1:11

designated areas; this algorithm is usable in real-time. An extensive generation process that combines
PRNG (Perlin noise), IF (erosion, smoothing), SA (Voronoi diagrams), and CS techniques has been
shown [Patel 2010] to generate a complete outdoor map, including an advanced ecosystem.

4.3.2 Road Networks. Many methods have been developed to generate road networks procedurally.
L-systems (GG), agent simulations (CS), and tensor fields (CS) have been used [Smelik et al. 2009]
to generate road networks. For example, L-systems have been used [Parish and Müller 2001] to cre-
ate road networks with control parameters such as population density, road patterns, elevation con-
straints, and local constraints such as nearby surface water or (non-)placement near other roads. As an
example of agent simulation, two types of agents–one to explore the terrain and create roads, another
to connect existing roads to each other into a terrain spanning tree–can be used [Lechner et al. 2003].
A method [Sun et al. 2002] that combines GG and SA techniques is based on Voronoi diagrams as locus
for intra-city roads and inter-city highways.

4.3.3 Urban Environments. [Kelly and McCabe 2006] give an excellent overview of the different
methods that can be used to generate urban environments. Generating these urban environments
often starts with a dense road network, where available space near roads are subdivided into build-
ing lots [Kelly and McCabe 2007]. Vectorization can be used to find the boundaries of these gridded
blocks [Sexton and Watson 2010]. Then, buildings are generated according to pre-defined rules.

Recently, more attention has been paid to the realism of the city, as most techniques fail to generate
cities with a realistic structure [Smelik et al. 2009]. [Weber et al. 2009] describes an evolutionary model
for city growth, which yields realistic results in a reasonable amount of time. [Eurographics 2009 2006]
generates in seconds, on commodity systems, cities that resemble real cities in Western Europe or the
United States.

4.3.4 Entity Behavior. Complex artificial intelligence techniques have been used to make game
entities react to the wide variety of actions a player can perform in a virtual world with a seeming
intelligence. An early example of such an approach is Eliza (1962), a conversational robot that has been
analyzed elsewhere [Murray 1997, p.69]; a contemporary, more advanced example is Façade [Mateas
and Stern 2005], in which two characters react to what the player does and says. Concerning group
behavior, Reynolds [Reynolds 1987] proposes a model for flock behavior using CS techniques.
4.4 Game Scenarios

4.4.1 Puzzles. While many algorithms for creating specific types of puzzles are known [Alt et al.
2009], most puzzles are still man-made. An approach to generate puzzle instances procedurally can be
based on PRNG techniques, where puzzle instances are randomly generated so that the entire space
of puzzle instances is searched [Iosup 2011]. Another approach is to use genetic programming; for
example [Ashlock 2010b], to generate chess and chromatic mazes. One of the main challenges in the
field is to generate interesting puzzles for a large amount of users. While the problem of scaling puzzle
generation is shown [Iosup 2009] to be feasible for simple puzzles, determining complexity for any
puzzle remains challenging [Colton 2002].

4.4.2 Storyboards. Procedural storyboard generation was developed to aid developers in the design
process of the game, rather than dynamically generating the story in real time; Story Canvas is an
example whose description surveys much related work [Skorupski and Mateas 2010]. The storyboard,
in the form of comic strips, would help assess the final gameplay for a given level design [Pizzi et al.
2010]. The player would act as the main agent of the level, with the gameplay actions acting as basic
elements in constructing a solution. Overall, every solution should reach the same set of goals (for
example, the assassination of a computer-controlled actor), yet achieve these goals through various
ways.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:12 • M. Hendrikx et al.

4.4.3 Stories. Generating a story based on the player’s actions could require a complex artificial
intelligence engine that can generate a cohesive storyline for various player inputs [Nareyek 2007]. At
the same time the engine also needs to abide to guidelines that exist for creating structured storylines.
For example, one of these guidelines is that the story tension must peak about every ten minutes to
keep the player’s attention.

Procedural storytelling may start from the structural approach to interactive storytelling of Vladimir
Propp [Propp 1968]. Propp developed a morphological method of classifying (describing) folk tales
through the use of story functions. The functions represent character actions, such as “departure”
and “guidance”; a limited set of actions turns out to be sufficient to describe the folk tales of many
nations [Gervás et al. 2004]. Although Propp’s work is limited to folk tales, a number of authors noted
that its structural analysis is applicable to many popular modern stories [Fairclough and Cunningham
2003]. Coupled with natural language processing techniques (from the AI field), Propp’s morphology
has been used to generate (game-like) stories using GG techniques.

[Riedl et al. 2011] uses the artificial intelligence technique of partial-order plans (POP) to represent
a story. They extend the standard POP plan representation by including author goals: intermediate
states that the story must contain. Other authors also extended POP, for example [Chen et al. 2010]
used formal models of roles to expand the expressiveness of stories. A problem with standard POP
solvers is that, although they can find valid solutions, these are not necessarily interesting. Actions
can break the structure of the story, in which case the planner of [Riedl et al. 2011] tries to find a new
narrative trajectory while taking a player model into account to maximize satisfaction. The planner
assumes that humans make the best story lines, and therefore tries to stay as close as possible to a hu-
man narrative trajectory. [Riedl and León 2009] also use POP, but takes a different approach in which
they try to generate novel stories by transforming existing stories based on analogical reasoning to find
points in the stories where parts can be interchanged. As noted by [Li and Riedl 2010], another impor-
tant problem with POP-based planners is that, currently, they can only be used for offline generation
and adaption of storylines.

4.4.4 Levels. Level generation is currently one of the most popular types of PCG-G. Although
nearly every genre can benefit from generated levels, 2D platformers and puzzles have especially at-
tracted attention. We have already discussed the generation of puzzles in Section 4.4.1.

[Compton and Mateas 2006] and [Smith et al. 2009] generate levels for 2D platformers based on
the concept of rhythm: the pattern of hand movements of a player when playing the game. Related,
[Shaker et al.] and [Jennings-Teats et al. 2010] demonstrate that personalized levels can be generated
online for platform games based on a player model. More general than platforms, [Dormans 2010] uses
a grammar to create a mission structure using graphs, which is then translated to a 2D level by using
a shape grammar.

4.5 Game Design
4.5.1 System Design. Few automatic game generation systems focusing on systems design have

been created. The Metagame generator [Pell 1993] can generate symmetric, chess-like games with
various piece strength, ability, and positioning. Another generator [Nelson and Mateas 2007] can gen-
erate games starting from few words and textures as input. The generated games are very simple,
but the generator creates a logically correct game from just a few words, by exploring the thematic
space–the generator infers which subjects and type of game match the words input by the user by
using common-sense knowledge bases. For example, if the supplied words are “shoot” and “pheasant”,
a game could be created where the player has to shoot a duck (a game where the player has to avoid
being shot by a pheasant is equally plausible to be generated). The EGGG generator [Orwant 2000]
takes a different approach by using the rules of a board-game as input. The EGGG generator focuses
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

Procedural Content Generation for Games: A Survey • 1:13

on abstract game mechanics (rules), which it combines using PRNG techniques. Another generator by
[Togelius and Schmidhuber 2008] evolves the game rules of a simple PacMan-like game. The possible
rules are limited. Using evolutionary programming the rules are evolved based on a fitness function
based on how difficult the game is learn, since it is assumed that an interesting game is easy to learn.
The hardness of a game is measured by using controllers which are evolved. Identically, [Hom and
Marks 2007] uses genetic algorithms to evolve games, however board games are evolved and the fit-
ness is based on the balance of the games. Another approach that automatically tests the generated
games through a constraint satisfaction technique is Variations Forever [Smith and Mateas 2010].

4.5.2 World Design. One of the rare game generators of this type is created by [Hartsook et al.],
which discusses a system that, based on computer or human generated story and a player preference
profile, generates Computer Role-Playing Games (CRPGs). In their approach first the user or computer
provides a story presented as a partial-order plan. Next, the game plot adaption algorithm modifies
the story based on a player’s preference model. Following the designer defines a game world model:
a model of which transitions between environment maps are realistic. Finally, based on the player’s
preference profile and the game world model, a genetic algorithm creates a 2D CRPG with the story
generated by the game plot adaption algorithm.
4.6 Derived Content
Creating derived content has largely been a task for players that wanted to record their daily gaming
experiences. While numerous videos and screenshots are manually produced and shared through sites
such as Machinima [Machinima.com 2011], video authoring is difficult and screenshots often lack the
context to convey a story.

Chan et al. [Chan et al. 2009] developed a system that creates comics based on key moments in the
player’s game session. The system picks the most significant frames out of a collected set of screenshots
and generates a matching comic layout, accompanied by speech bubbles to indicate sound effects and
events. Similarly, an existing [Nelson and Mateas 2007], automated game generator could be used to
create news-related games. Cheong et al. [Cheong et al. 2008] describe a system that summarizes game
experiences based on game logs, and creates videos based on these.
4.7 Use of Procedural Content Generation in Games
In this section we provide an overview of games that use PCG-G techniques. Our selection of games
is not exhaustive–too many games use PCG-G techniques. Instead, we focus on games that have been
included in the Vintage Games [Loguidice and Barton 2009] (including the web chapters) selection,
won industry awards, or have been very recently released and became popular. From these, we select
games that cover many game genres, including Strategy (both Real-Time and Turn-Based), simulation
(flight), RPG (including roguelike), and FPS.

Elite, a space exploration and trading game, is one of the earliest games to generate a full world–
space, systems, and scenarios–procedurally [Loguidice and Barton 2009, Web Chapter]. Inpired by
Elite, EVE Online, a popular massively multiplayer online game, generates its planets’ visuals [Ten-
TonHammer.com 2009], and its universe and scenarios [Procedural Content Generation Wiki 2009];
EVE Online uses CS techniques to generate its universe and PRNG techniques to place hand-generated
scenarios. Other strategy games such as X-Com: UFO Defense, and FreeCiv and Civilization IV (the
Civs) generate their game space procedurally. For X-Com, the tactical ground operations take place
in randomly-generated, urban-like environments. For the Civs, the terrain and the resources are ran-
domly generated using PRNG and CS techniques, some of which are provided by the two games’ re-
spective communities [Civilization Fanatics 2005; FreeCiv Community 2005].

Rogue [Loguidice and Barton 2009, Web Chapter] is an open-source, free-to-change game that spawned
popular free-to-use games such as Moria (1983), NetHack (1987), Angband (1990) and Unangband,

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:14 • M. Hendrikx et al.

Table I. Use of PCG-G techniques in games. We did not find commercial games
that generate procedurally Game Designs or Derived Content.

Games (with year of release) Game
Bits

Game
space

Game
Systems

Game Sce-
narios

Borderlands (2009) x
Diablo I (2000) x
Diablo II (2008) x x
Dwarf Fortress (2006) x x x
Elder Scrolls IV: Oblivion (2007) x
Elite (1984) x x x
EVE Online (2003) x x x
Facade (2005) x
FreeCiv and Civilization IV (2004) x
Fuel (2009) x
Gears of War 2 (2008) x
Left4Dead (2008) x
.kkrieger (2004) x
Minecraft (2009) x
Noctis (2002) x
RoboBlitz (2006) x
Realm of the Mad God (2010) x
Rogue (1980) x x
Spelunky (2008) x x x
Spore (2008) x x
Torchlight (2009) x
X-Com: UFO Defense (1994) x

Thomas Biskup’s Ancient Domains of Mystery (ADOM) (1994), and Dwarf Fortress; all these games are
“roguelike”. Rogue also inspired many popular commercial games, including the Diablo series [Logu-
idice and Barton 2009, Ch.4], Torchlight, and Realm of the Mad God. Rogue and its descendants
generate the indoor game space–dungeons, caves, etc.–procedurally using PRNG, SA, and CS tech-
niques [Doull 2007a; 2007b; Pullen 2011]. Similarly to ADOM, which is “the most complex of the
lot” [Loguidice and Barton 2009, Web Chapter], Diablo II extends [IGN Australia 2008] the procedural
generation of dungeons with random adventures (scenarios). Dwarf Fortress and Realm of the Mad
God generate complete worlds, including the outdoor maps and the ecosystem, through a combination
of PRNG, IF, SA, and CS techniques [Patel 2010]. Spelunky [Yu 2008] is a roguelike-platform game
that generates “levels, items, monsters, and so forth” (http://pcg.wikidot.com/pcg-games:spelunky).

Other games use PCG-G techniques. Noctis and Spore generate planets (visuals and characteristics).
Left4Dead generates scenarios by creating enemy encounters dynamically, based on the computer-
analyzed stress level of the players. Elder Scrolls IV: Oblivion and Gears of War 2 are just two of the
many games [SpeedTree.com 2011] that use the SpeedTree middleware [Re et al. 2009] to generate
vegetation. Façade is an interactive drama game that reacts on text input by the player. RoboBlitz
uses procedural techniques to store textures.
5. RECOMMENDATIONS FOR FUTURE RESEARCH IN PCG-G
Prompted by the significant progress in the field of PCG-G and by the uptake of research results by
the industry, in this section we make five recommendations for future research.

(1) Generating content at the top of the content pyramid (layers “Game Scenarios”, “Game Design”,
and “Derived Content”.) Although many concepts and designs for storytelling systems have been
created [TID 2004], they have yet to find their way into successful commercial games; their main
failing may still be the lack of capabilities for producing authentic characters and drama [Fair-

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

Procedural Content Generation for Games: A Survey • 1:15

clough and Cunningham 2003]. Procedural game design is a starting research field, with early
results such as the formalization of game design [Nelson and Mateas 2007]. For complete game
generation, a generator that focuses on creating news-based games may be academically challeng-
ing (Which news are the most appealing to gameplayers? How to generate games from them?)
and commercially attractive. Creating derived content has traditionally been a task for the game
communities themselves, but authoring and event-selection tools should provide fertile research
ground. These automated systems would have to act like movie directors, journalists, or educa-
tors. Generating levels for more game genres, in addition to extensions to the early approaches for
generating content for 2D platformers and puzzle games, is a very promising area for the future.

(2) More detailed generators (especially for the “Game Space” and “Game Systems” layers) As players
are getting more used with realistic games, and as new platforms become increasingly able to
use more detailed content, the demand for more detailed content is increasing. Generating high-
definition content, both realistic and non-realistic, is already increasing content production costs
faster than the increase in game revenues [Takatsuki 2007]. In the future, research should adapt
the existing generators to the new insights in the modeling and simulation of a variety of game-
related topics: building indoors [Taylor and Parberry 2010], object behavior, river deltas, coastal
regions, mountain crevasses, ecosystem formation and evolution, climate, etc. Research should also
focus on the interaction between generators, for example water-soil and fauna-urban build-up.

(3) Generating the “missing” game bits (the “Game Bits” layer) More types of game bits may become
the focus of researchers as content generators for other layers become more realistic. Procedurally
generating game bits such as animals, vehicles, and humans [van Welbergen et al. 2010] is complex
and requires much future research; the complexity stems from the additional importance the play-
ers put on moving game objects. As an example, human motion synthesis, that is, the procedural
combination of walking sequences, is an active field of research in 2010 [van Basten et al. 2010].

(4) The detail-performance trade-off (generating content at scale) Increasing detail is possible even
today, for example by using the modeling and simulation results of decades of Earth science re-
search. However, these models are not easily tractable, and supercomputers and computing grids
are necessary today to compute on these models. The study of the detail-performance trade-offs
could lead to new game techniques and tools. The possible innovation could also follow two direc-
tions in computer systems design: scale-in, that is, using multi-core computers (especially graphics
cards) for real-time content generation; and scale-out, that is, using multi-node computers such as
supercomputers and computing grids for massive content generation. Scale-in research may lead
to technology that will be embedded in every gamer’s environment; scale-out may affect the oper-
ation of massively multiplayer online games and of games that operate entirely as a service. The
scale-out approach also requires novel techniques for content distribution [Mondet et al. 2009].

(5) Evaluation of generated content Research in techniques for content generation should be comple-
mented by research in (semi-)automatic evaluation of generated content. Although several ap-
proaches have been proposed, much work remains to be done in characterizing the quantity [Smith
and Whitehead 2010], playability [Smith et al. 2010], learnability [Togelius and Schmidhuber
2008], difficulty [Iosup 2011; Smith and Whitehead 2010], freshness [Iosup 2011] and interesting-
ness [Schmidhuber 2002], utility [Li and Riedl 2010], and other elements that may be important
for the experience of users. User-centric design [Norman 2002] is an established field in which
game-specific techniques are starting to be developed by large companies [Kim et al. 2008; Wixon
and Pagulayan 2008], but it is unclear if the proposed techniques can work for the majority of
game development studios that cannot afford large-scale, technology-heavy, real-user studies. In-
creasing the detail of generated content may lead to more parameters needed to control the pro-

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:16 • M. Hendrikx et al.

cess of procedural game content generation. In turn, this increases the cost of content production,
as more experimentation and expertise are required to produce the desired results. The study the
trade-off between detail and content generation controllability [Smelik et al. 2010] (and expressive-
ness [Smith and Whitehead 2010]) could lead to the development of new procedural techniques.

6. CONCLUSION
The research field of procedural game content generation is evolving rapidly, driven by the increasing
demand from game development companies. In this work we have presented a comprehensive survey
of Procedural Game Content Generation (PCG-G). First, we have created a taxonomy of game content
with six layers: game bits, game space, game systems, game scenarios, game design, and derived con-
tent. These layers have been ordered by complexity, with each layer using the techniques and methods
from the layer before it. Second, we have created a taxonomy of PCG-G techniques that can be used to
generate content from different layers in our content taxonomy. Third, we have surveyed the state-of-
the-art in PCG-G techniques and the use of these techniques in (real) games. We have found an inverse
relationship between the position of the layer in the content taxonomy and the maturity of the layer’s
procedural generation techniques. We have also found that many real games use PCG-G techniques,
but that usage if often limited to a particular type of game content. Last, we have made five recommen-
dations for future research on PCG-G: generating content from the high-complexity layers, developing
more realistic generators, generating the missing game bits, investigating the realism-performance
trade-off, and investigating the realism-control trade-off.

We intend to continue our work on the survey of PCG-G by focusing more on commercial games. We
would like to conduct a survey or interviews on this topic with commercial game studios.

Acknowledgments
We thank our reviewers for their useful comments. Thanks to them, we have discovered a new home!
REFERENCES

2004. Technologies for Interactive Digital Storytelling and Entertainment, Second International Conference.
ADAMS, D. 2002. Automatic generation of dungeons for computer grames. B.Sc. Thesis, University of Sheffield, UK.
www.dcs.shef.ac.uk/intranet/teaching/projects/archive/ug2002/pdf/u9da.pdf.

ALEXANDER, C. 1977. A Pattern Language: Towns, Buildings, Construction. Oxford University Press.
ALT, H., BODLAENDER, H. L., VAN KREVELD, M. J., ROTE, G., AND TEL, G. 2009. Wooden geometric puzzles: Design and

hardness proofs. Theory Comput. Syst. 44, 2, 160–174.
ASHLOCK, D. 2010a. Automatic generation of game elements via evolution. In IEEE Symposium on Computational Intelligence

and Games (CIG), 2010. 289 –296.
ASHLOCK, D. 2010b. Automatic generation of game elements via evolution. In IEEE Symposium on Computational Intelligence

and Games (CIG), 2010. IEEE, 289–296.
AURENHAMMER, F. 1991. Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Comput. Surv. 23,

345–405.
BABCOCK, J. 2005. Cellular automata method for generating random cave-like levels. roguebasin.roguelikedevelopment.org/
index.php?title=Cellular_Automata_Method_for_Generating_Random_Cave-Like_Levels.

BARRON, T. 1999. Multiplayer Game Programming. Prima Publishing.
BARTLE, R. 2003. Designing Virtual Worlds. New Riders Games.
BRATHWAITE, B. AND SCHREIBER, I. 2008. Challenges for game designers.
CHAN, C., THAWONMAS, R., AND CHEN, K. 2009. Automatic storytelling in comics: a case study on World of Warcraft. In

International Conference on Human factors in computing systems. ACM, 3589–3594.
CHEN, G., ESCH, G., WONKA, P., MÜLLER, P., AND ZHANG, E. 2008. Interactive procedural street modeling. In ACM SIG-

GRAPH 2008 Papers. ACM, 103.
CHEN, S., SMITH, A. M., JHALA, A., WARDRIP-FRUIN, N., AND MATEAS, M. 2010. Rolemodel: towards a formal model of

dramatic roles for story generation. In Intelligent Narrative Technologies III Workshop. INT3 ’10. ACM, New York, NY, USA,
17:1–17:8.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

Procedural Content Generation for Games: A Survey • 1:17

CHEONG, Y., JHALA, A., BAE, B., AND YOUNG, R. 2008. Automatically generating summary visualizations from game logs.
Proc. AIIDE.

CHIO, C. D., CAGNONI, S., COTTA, C., EBNER, M., EKÁRT, A., ESPARCIA-ALCÁZAR, A., GOH, C. K., GUERVÓS, J. J. M., NERI,
F., PREUSS, M., TOGELIUS, J., AND YANNAKAKIS, G. N., Eds. 2010. Applications of Evolutionary Computation. Lecture Notes
in Computer Science Series, vol. 6024. Springer.

CHOPARD, B. AND DROZ, M. 1998. Cellular Automata Modeling of Physical Systems. Cambridge University Press.
CIVILIZATION FANATICS. 2005. [map script] full of resources: Archipelago, lakes, terra, pangaea, custom continents, hub,

fractal, continents, inland sea, ring, wheel, islands, shuffle, big and small, hemispheres, medium and small, tectonics, chess.
Community discussion. forums.civfanatics.com/showthread.php?s=7ef168705a794e2c328217a5de2e8589&t=151629.

CLYDE, D. 2004. Adding realistic rivers to random terrain. GameDev technical article.
http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/ug2002/pdf/u9da.pdf Accessed via archive.org on 24
January 2011.

COLTON, S. 2002. Automated puzzle generation. In AISB’02 Symposium on AI and Creativity in the Arts and Science.
COMPLEXITYGAMING.COM. 2008. Incredible wow stats. ComplexityGaming.com community post. www.complexitygaming.com/
forums/showthread.php?p=25334.

COMPTON, K. AND MATEAS, M. 2006. Procedural level design for platform games. In Artificial Intelligence and Interactive
Digital Entertainment International Conference.

DAVIDSSON, P. 2001. Multi agent based simulation: Beyond social simulation. In Multi-Agent-Based Simulation, S. Moss and
P. Davidsson, Eds. Lecture Notes in Computer Science Series, vol. 1979. Springer Berlin / Heidelberg, 141–155.

DE BERG, M., CHEONG, O., VAN KREVELD, M., AND OVERMARS, M. 2008. Computational geometry: algorithms and applica-
tions. Springer. 3rd Ed.

DE CARPENTIER, G. J. P. AND BIDARRA, R. 2009. Interactive gpu-based procedural heightfield brushes. In International
Conference on Foundations of Digital Games. FDG ’09. ACM, New York, NY, USA, 55–62.

DEUSSEN, O., HANRAHAN, P., LINTERMANN, B., MĚCH, R., PHARR, M., AND PRUSINKIEWICZ, P. 1998. Realistic modeling
and rendering of plant ecosystems. In Annual Conference on Computer graphics and Interactive Techniques. ACM, 275–286.

DEUSSEN, O. AND LINTERMANN, B. 1999. Interactive modeling of plants. IEEE Computer Graphics and Applications 19,
56–65.

DORAN, J. AND PARBERRY, I. 2010. Controlled procedural terrain generation using software agents. IEEE Transactions on
Computational Intelligence and AI in Games 2, 2, 111–119.

DORMANS, J. 2010. Adventures in level design: generating missions and spaces for action adventure games. In Workshop on
Procedural Content Generation in Games. ACM, 1–8.

DORSEY, J. AND RUSHMEIER, H. 2009. Advanced material appearance modeling. In SIGGRAPH ’09: ACM SIGGRAPH 2009
Courses. ACM, New York, NY, USA, 1–134.

DOULL, A. 2007a. Unangband dungeon generation, parts 1–9. roguelikedeveloper.blogspot.com/2007/11/

unangband-dungeon-generation-part-one.html.
DOULL, A. 2007b. Wilderness generation using voronoi diagrams - part i. roguelikedeveloper.blogspot.com/2007/07/

wilderness-generation-using-voronoi.html.
EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K., AND WORLEY, S. 2002. Texturing and Modeling: A Procedural

Approach 3rd Ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
EDELSTEIN-KESHET, L. 2005. Mathematical Models in Biology. Classics in Applied Mathematics Series, vol. 46. SIAM.
EDWARDS, B. 1989. Drawing on the Right Side of the Brain. The Putnam Publishing Group, New York, NY, USA.
EDWARDS, M. 2011. Algorithmic composition: computational thinking in music. Commun. ACM 54, 58–67.
ELAS, T. 2010. The cost of creating and maintaining an MMORPG. Tham’s Blog. www.thamelas.com/2010/02/12/

the-cost-of-creating-and-maintaining-an-mmorpg/.
ESA. 2010. Essential facts about the computer and video game industry: Sales, demographics, and usage data. Annual Report,

series 2003–2009. [Online] Available: http://www.theesa.com.
Eurographics 2009 2006. Procedural City Layout Generation Based on Urban Land Use Models. Eurographics 2009.
FAIRCLOUGH, C. AND CUNNINGHAM, P. 2003. A multiplayer case based story engine. In 4th International Conference on

Intelligent Games and Simulation (GAME-ON). 41–46.
FARBRAUSCH PROD. 2006. Website of .kkrieger producer, .theprodukkt. http: // www. theprodukkt. com/ .
FARNELL, A. 2007. An introduction to procedural audio and its application in computer games.
FIELDS, T. 2010. Distributed Game Development: Harnessing Global Talent to Create Winning Games. Focal Press.
FLAKE, G. 1999. The Computational Beauty of Nature. MIT press.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:18 • M. Hendrikx et al.

FRADE, M., DE VEGA, F. F., AND COTTA, C. 2010. Evolution of artificial terrains for video games based on accessibility. See
Chio et al. [2010], 90–99.

FREECIV COMMUNITY. 2005. Map comparison. Community discussion. www.samiam.org/freeciv/.
GARFIELD, R. 2000. Metagames. Horsemen of the Apocalypse: Essays on Roleplaying. Reproduced as Lost in the Shuffle:

Games Within Games, http://www.wizards.com/Magic/magazine/Article.aspx?x=mtg/daily/feature/96.
GERVÁS, P., D ÍAZ-AGUDO, B., PEINADO, F., AND HERVÁS, R. 2004. Story plot generation based on CBR. Applications and

Innovations in Intelligent Systems XII, 33–46.
GOLDBERG, D. 1989. Genetic algorithms in search, optimization, and machine learning.
GREUTER, S., PARKER, J., STEWART, N., AND LEACH, G. 2003. Real-time procedural generation of ’pseudo infinite’ cities. In

International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia. 87–95.
HAMMES, J. 2001. Modeling of ecosystems as a data source for real-time terrain rendering. Lecture notes in computer sci-

ence 2181, 98–111.
HARTSOOK, K., ZOOK, A., DAS, S., AND RIEDL, M. Toward supporting stories with procedurally generated game worlds.
HASTINGS, E., GUHA, R., AND STANLEY, K. 2009. Automatic content generation in the galactic arms race video game. IEEE

Transactions on Computational Intelligence and AI in Games 1, 4, 245–263.
HAYKIN, S. 1994. Neural networks: a comprehensive foundation. Prentice Hall PTR Upper Saddle River, NJ, USA.
HIDALGO, J., CAMAHORT, E., ABAD, F., AND VICENT, M. 2008. Procedural Graphics Model and Behavior Generation. Lecture

Notes in Computer Science 5102, 106–115.
HILLBERRY, J. D. 1999. Drawing Realistic Textures in Pencil. North Light Books, Cincinnati, OH, USA.
HOM, V. AND MARKS, J. 2007. Automatic design of balanced board games. In Proc. 3rd Artificial Intelligence and Interactive

Digital Entertainment Conference. 25–30.
IGN AUSTRALIA. 2008. The ten commandments of diablo iii. Technical Article. uk.pc.ign.com/articles/888/888189p1.html.
IOSUP, A. 2009. Poggi: Puzzle-based online games on grid infrastructures. In Euro-Par. Lecture Notes in Computer Science

Series, vol. 5704. Springer, 390–403.
IOSUP, A. 2011. POGGI: generating puzzle instances for online games on grid infrastructures. Concurrency and Computation:

Practice and Experience 23, 2, 158–171.
IOSUP, A., LASCATEU, A., AND TAPUS, N. 2010. CAMEO: Enabling social networks for massively multiplayer online games

through continuous analytics and cloud computing. In ACM/IEEE Symposium on Network and Systems Support for Games
(NetGames 2010). 1–6.

IRISH, D. 2005. The Game Producer’s Handbook. Course Technology PTR.
JENNINGS-TEATS, M., SMITH, G., AND WARDRIP-FRUIN, N. 2010. Polymorph: dynamic difficulty adjustment through level

generation. In Workshop on Procedural Content Generation in Games. PCGames ’10. ACM, New York, NY, USA, 11:1–11:4.
JOHNSON, L., YANNAKAKIS, G. N., AND TOGELIUS, J. 2010a. Cellular automata for real-time generation of infinite cave levels.

In Workshop on Procedural Content Generation in Games. PCGames ’10. ACM, New York, NY, USA, 10:1–10:4.
JOHNSON, L., YANNAKAKIS, G. N., AND TOGELIUS, J. 2010b. Cellular automata for real-timee generation of infinite cave levels.

In PCGames. ACM, New York, NY, USA, 1–8.
JOHNSON, S. 2006. The long zoom. The New York Times. www.nytimes.com/2006/10/08/magazine/08games.html.
KELLY, G. AND MCCABE, H. 2006. A survey of procedural techniques for city generation. ITB Journal 14, 87–130.
KELLY, G. AND MCCABE, H. 2007. Citygen: An interactive system for procedural city generation. In Fifth International

Conference on Game Design and Technology. 8–16.
KIM, J. H., GUNN, D. V., SCHUH, E., PHILLIPS, B., PAGULAYAN, R. J., AND WIXON, D. R. 2008. Tracking real-time user

experience (TRUE): a comprehensive instrumentation solution for complex systems. In CHI.
KRUEGER, B. D., BRAND, O., AND BURTON, D. 2005. Reinventing your company without reinventing the wheel. Game Devel-

opers Conference.
KUSHNER, D. 2003. Masters of Doom: How two guys created an empire and transformed pop culture. Random House, New York.
LARIVE, M. AND GAILDRAT, V. 2006. Wall grammar for building generation. In International Conference on Computer Graphics

and Interactive Techniques in Australasia and Southeast Asia. ACM, 437.
LECHNER, T., WATSON, B., AND WILENSKY, U. 2003. Procedural city modeling. In In 1st Midwestern Graphics Conference.
LECKY-THOMPSON, G. W. 2001. Infinite game universe: Mathematical techniques. Advances in Computer Graphics and Game

Development. Charles River Media.
LEFEBVRE, S. AND NEYRET, F. 2003. Pattern based procedural textures. In I3D 2003 Conf. Proc. 203–212.
LI, B. AND RIEDL, M. 2010. An offline planning approach to game plotline adaptation. In Proc. of the 6th AI and Interactive

Digital Entertainment Conference.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

Procedural Content Generation for Games: A Survey • 1:19

LOGUIDICE, B. AND BARTON, M. 2009. Vintage Games: An Insider Look at the History of Grand Theft Auto, Super Mario, and
the Most Influential Games of All Time. Elsevier Focal Press.

LOOMIS, A. 1951. Successful Drawing. The Viking Press, New York, NY, USA.
MACHINIMA.COM. 2011. Machinima.
MANOCHA, D., CALAMIA, P., LIN, M. C., MANOCHA, D., SAVIOJA, L., AND TSINGOS, N. 2009. Interactive sound rendering. In

SIGGRAPH ’09: ACM SIGGRAPH 2009 Courses. ACM, New York, NY, USA, 1–338.
MARTIN, J. 2006. Procedural house generation: A method for dynamically generating floor plans. In Symposium on Interactive

3D Graphics and Games. 1–2.
MATEAS, M. AND STERN, A. 2005. Procedural authorship: A case-study of the interactive drama facade. In Digital Arts and

Culture: Digital Experience: Design, Aesthetics, Practice (DAC 2005). 1–8.
MONDET, S., CHENG, W., MORIN, G., GRIGORAS, R., BOUDON, F., AND OOI, W. T. 2009. Compact and progressive plant models

for streaming in networked virtual environments. TOMCCAP 5, 3.
MOSS, W., YEH, H., HONG, J.-M., LIN, M. C., AND MANOCHA, D. 2010. Sounding liquids: Automatic sound synthesis from

fluid simulation. ACM Transactions on Graphics (TOG) 29.
MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND VAN GOOL, L. 2006. Procedural modeling of buildings. In ACM

SIGGRAPH 2006 Papers. ACM, 623.
MURRAY, J. H. 1997. Hamlet on the Holodeck: The Future of Narrative in Cyberspace. The Free Press, New York, NY, USA.
NAREYEK, A. 2007. Game AI Is Dead. Long Live Game AI! IEEE intelligent Systems 22, 9–11.
NELSON, M. J. AND MATEAS, M. 2007. Towards automated game design. In Congress of the Italian Association for Artificial

Intelligence on AI*IA 2007. Springer-Verlag, Berlin, Heidelberg, 626–637.
NITSCHE, M. 2009. Video Game Spaces: Image, Play, and Structure in 3D Worlds. MIT Press.
NORMAN, D. A. 2002. The Design of Everyday Things. Basic Books.
ORWANT, J. 2000. Eggg: automated programming for game generation. IBM Syst. J. 39, 782–794.
PARISH, Y. AND MÜLLER, P. 2001. Procedural modeling of cities. In Annual Conference on Computer Graphics and Interactive

Techniques. ACM, 301–308.
PATEL, A. 2010. Polygonal map generation. Blog. www-cs-students.stanford.edu/~amitp/game-programming/

polygon-map-generation/.
PELL, B. 1993. METAGAME in symmetric chess-like games. Tech. Rep. UCAM-CL-TR-277, University of Cambridge, Computer

Laboratory.
PERLIN, K. 1985. An image synthesizer. SIGGRAPH Comput. Graph. 19, 287–296.
PERLIN, K. 1990. Making noise. http://www.noisemachine.com/talk1/.
PI, X., SONG, J., ZENG, L., AND LI, S. 2006. Procedural terrain detail based on patch-lod algorithm. In Edutainment, Z. Pan,

R. Aylett, H. Diener, X. Jin, S. Göbel, and L. Li, Eds. Lecture Notes in Computer Science. Springer, 913–920.
PIZZI, D., LUGRIN, J., WHITTAKER, A., AND CAVAZZA, M. 2010. Automatic generation of game level solutions as storyboards.

IEEE Transactions on Computational Intelligence and AI in Games 2, 3, 149–161.
PROCEDURAL CONTENT GENERATION WIKI. 2009. Eve online. Technical Article. http://pcg.wikidot.com/pcg-games:

eve-online.
PROPP, V. 1968. Morphology of the Folktale. Univ of Texas Pr.
PRUSINKIEWICZ, P. AND HAMMEL, M. 1993. Fractal model of mountains with rivers. In Proceeding of Graphics Interface

(Toronto, Ontario, May 19-21, 1993). 174–180.
PULLEN, W. 2011. Think labyrinth: Maze classification, creation algorithms, and solving algorithms page. www.astrolog.org/
labyrnth/algrithm.htm.

RE, A., ABAD, F., CAMAHORT, E., AND JUAN, M. C. 2009. Tools for procedural generation of plants in virtual scenes. In ICCS
2009: International Conference on Computational Science. Springer-Verlag, Berlin, Heidelberg, 801–810.

REYNOLDS, C. 1987. Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH Computer Graphics.
Vol. 21. ACM, 25–34.

REYNOLDS, C. 2010a. Using interactive evolution to discover camouflage patterns. In SIGGRAPH Posters. ACM.
REYNOLDS, D. 2010b. The cost to make a quality MMORPG. Self-published. www.whatmmorpg.com/

cost-to-make-a-quality-mmorpg.php.
RIEDL, M. AND LEÓN, C. 2009. Generating story analogues. In Proc. AIIDE09: the 5th Conf. on Artificial Intelligence for

Interactive Digital Entertainment, AAAI Press.
RIEDL, M., THUE, D., AND BULITKO, V. 2011. Game ai as storytelling. Artificial Intelligence for Computer Games, 125.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:20 • M. Hendrikx et al.

RODEN, T. AND PARBERRY, I. 2005. Clouds and stars: efficient real-time procedural sky rendering using 3d hardware. In ACE
’05: ACM SIGCHI International Conference on Advances in Computer Entertainment Technology. ACM, New York, NY, USA,
434–437.

ROSSIGNOL, J. 2008. This Gaming Life: Travels in Three Cities. U. Michigan Press.
RUSSELL, S., NORVIG, P., CANNY, J., MALIK, J., AND EDWARDS, D. 1995. Artificial intelligence: a modern approach. Vol. 74.

Prentice hall Englewood Cliffs, NJ.
SCHMIDHUBER, J. 2002. Exploring the predictable. In Advances in Evolutionary Computing, A. Ghosh and S. Tsuitsui, Eds.

Springer, 579–612.
SEXTON, C. AND WATSON, B. 2010. Vectorization of gridded urban land use data. In Workshop on Procedural Content Generation

in Games. PCGames ’10. ACM, New York, NY, USA, 5:1–5:8.
SHAKER, N., YANNAKAKIS, G., AND TOGELIUS, J. Towards automatic personalized content generation for platform games. In

AIIDE. 63–68.
SIMS, K. 1991. Artificial evolution for computer graphics. In SIGGRAPH. ACM, 319–328.
SKORUPSKI, J. AND MATEAS, M. 2010. Novice-friendly authoring of plan-based interactive storyboards. In AIIDE. (poster)
http://eis.ucsc.edu/sites/default/files/SkorupskiMateas_AIIDE2010_final.pdf.

SMELIK, R., DE KRAKER, K., TUTENEL, T., BIDARRA, R., AND GROENEWEGEN, S. 2009. A survey of procedural methods for
terrain modelling. In CASA Workshop on 3D Advanced Media In Gaming And Simulation (3AMIGAS), A. Egges, W. Hürst,
and R. C. Veltkamp, Eds. 25–34.

SMELIK, R., TUTENEL, T., DE KRAKER, K. J., AND BIDARRA, R. 2010. Integrating procedural generation and manual editing
of virtual worlds. In Workshop on Procedural Content Generation in Games. PCGames ’10. ACM, New York, NY, USA, 2:1–2:8.

SMITH, A. M. AND MATEAS, M. 2010. Variations Forever: Flexibly generating rulesets from a sculptable design space of mini-
games. In IEEE Symposium on Computational Intelligence and Games (CIG). IEEE, 111–118.

SMITH, G., TREANOR, M., WHITEHEAD, J., AND MATEAS, M. 2009. Rhythm-based level generation for 2d platformers. In
International Conference on Foundations of Digital Games. ACM, 175–182.

SMITH, G. AND WHITEHEAD, J. 2010. Analyzing the expressive range of a level generator. In Workshop on Procedural Content
Generation in Games. PCGames ’10. ACM, New York, NY, USA, 4:1–4:7.

SMITH, G., WHITEHEAD, J., AND MATEAS, M. 2010. Tanagra: a mixed-initiative level design tool. In International Conference
on the Foundations of Digital Games. FDG ’10. ACM, New York, NY, USA, 209–216.

SMITH, ADAM M. 2009. cfml: the context-free music language. http: // eis-blog. ucsc. edu/ 2009/ 11/

cfml-the-context-free-music-language/ .
SORENSON, N. AND PASQUIER, P. 2010. Towards a generic framework for automated video game level creation. In Applications

of Evolutionary Comp., EvoApplicatons 2010. Lecture Notes in Computer Science Series, vol. 6024. Springer, 131–140.
SPEEDTREE.COM. 2011. Speedtree list of games.
STROGATZ, S. H. 1994. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering.

Perseus Books Publishing, LLC.
SUN, J., YU, X., BACIU, G., AND GREEN, M. 2002. Template-based generation of road networks for virtual city modeling. In

ACM Symposium on Virtual Reality Software and Technology. VRST ’02. ACM, New York, NY, USA, 33–40.
TAKATSUKI, Y. 2007. Cost headache for game developers. news.bbc.co.uk/2/hi/business/7151961.stm.
TAYLOR, J. AND PARBERRY, I. 2010. Computerized clutter: How to make a virtual room look lived-in. Tech. Rep. Technical

Report LARC-2010-01, Laboratory for Recreational Computing, Dept. of Computer Science andEngineering, University of
North Texas. April.

TENTONHAMMER.COM. 2009. Incarna Incarnate: An EVE Online Q&A with Torfi Frans Olafsson. www.tentonhammer.com/

node/75367.
TOGELIUS, J. AND SCHMIDHUBER, J. 2008. An experiment in automatic game design. In IEEE Symposium on Computational

Intelligence and Games, 2008. CIG’08. IEEE, 111–118.
TOGELIUS, J., YANNAKAKIS, G. N., STANLEY, K. O., AND BROWNE, C. 2010. Search-based procedural content generation. See

Chio et al. [2010], 141–150.
VAN BASTEN, B. J. H., PEETERS, P. W. A. M., AND EGGES, A. 2010. The step space: example-based footprint-driven motion

synthesis. Journal of Visualization and Computer Animation 21, 3-4, 433–441.
VAN VERTH, J. M. AND BISHOP, L. M. 2008. Essential mathematics for games and interactive applications: a programmer’s

guide. Elsevier Morgan Kaufmann Publishers. 2nd Ed.
VAN WELBERGEN, H., VAN BASTEN, B. J. H., EGGES, A., RUTTKAY, Z., AND OVERMARS, M. H. 2010. Real time animation of

virtual humans: A trade-off between naturalness and control. Comput. Graph. Forum 29, 8, 2530–2554.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

Procedural Content Generation for Games: A Survey • 1:21

VIDEO GAME SALES WIKI. 2009. Video game costs. vgsales.wikia.com/wiki/Video_game_costs.
WEBER, B., MÜLLER, P., WONKA, P., AND GROSS, M. 2009. Interactive Geometric Simulation of 4D Cities. In Computer

Graphics Forum. Vol. 28. Blackwell Publishing, 481–492.
WEBER, J. AND PENN, J. 1995. Creation and rendering of realistic trees. In Annual Conference on Computer Graphics and

Interactive Techniques. SIGGRAPH ’95. ACM, New York, NY, USA, 119–128.
WHITEHEAD, J. 2010. Toward proccedural decorative ornamentation in games. In Workshop on Procedural Content Generation

in Games. PCGames ’10. ACM, New York, NY, USA, 9:1–9:4.
WIXON, D. R. AND PAGULAYAN, R. J. 2008. That’s entertainmnt - Halo 3: the theory and practice of a research-design partner-

ship. Interactions 15, 1, 52–55.
WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W. 2003. Instant architecture. ACM Transactions on Graphics 22,

669–677.
YU, D. 2008. Spelunky. Game and Source code.
http://www.derekyu.com/games/ Accessed 14 July 2011.

A. MORE DETAILS ON THE TAXONOMY OF METHODS FOR PROCEDURAL CONTENT GENERATION
In this section we discuss the classes of methods introduced in Section 3.
A.1 Pseudo-Random Number Generators (PRNG)
Nature often gives the illusion of randomness, for example in the shape of a mountain, a cloud, or a
flower. Pseudo-random number generators (PRNGs) can, therefore, be used for mimicking the random-
ness found in nature.

Perlin noise [Perlin 1985; 1990] is a PRNG-based noise generator with wide use in media and en-
tertainment. This noise generates maps of data points (random values). The map data points are
generated by a seeded PRNG through interpolation. More detail can be added to the noise map by
combining multiple layers of Perlin noise and by using scaling. The Perlin noise is representative for
the many PRNG-based techniques used in games [Van Verth and Bishop 2008]; other popular PRNGs
exist [Lecky-Thompson 2001].
A.2 Generative Grammars (GG)
Generative grammars, stemming from Noam Chomsky’s study of languages in the 1960s, are sets of
rules that, operating on individual words, can generate only grammatically-correct sentences. They
can be used to create correct objects from elements encoded as letters/words. In this section we discuss
L-systems, split grammars, wall grammars, and shape grammars, which have been used for content
generation in entertainment.

A.2.1 Lindenmayer-systems. (L-systems) consist of a grammar consisting of symbols which de-
scribe the characteristics of an object. A string generated by the grammar describes the structure
or the behavior of an object.

A.2.2 Split Grammars. Similarly to L-systems, split grammars [Wonka et al. 2003] work on string-
encoded shapes. New shapes are generated from a basic set of shapes by applying rewriting rules
governing shape-to-shape conversion, the split grammar generates a new shape. For example, using
a split grammar an initial wall-shape can be divided into two smaller shapes, which in turn can be
rewritten (converted) into a window frame shape and a window shape. Split grammars are context-
free, meaning that the rewriting process always yields the same result given a set of rewriting rules,
no matter in which order the string of symbols is evaluated.

A.2.3 Wall Grammars. [Larive and Gaildrat 2006] are specifically designed for creating building
exteriors. Shapes are manipulated to form a building exterior similarly to split grammars, but wall
grammars can generate more advanced shapes–for example, the wall extrusion rule can lead to com-
plex three-dimensional shapes like balconies and fire escapes.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:22 • M. Hendrikx et al.

A.2.4 Shape Grammars. [Müller et al. 2006] are context-sensitive and sequential grammars orig-
inating from the work of Stiny in the 1970s. For each rewriting step, the symbol and its neighbors in
the string determine what symbol(s) replace the original symbol. Therefore, the rewriting process of
shape grammars is different from L-systems or split grammars. Similarly to wall grammars, shape
grammars can generate more complex structures.
A.3 Image Filtering (IF)
Image filtering has as main goal to improve an image with regard to a (subjective) measure, or to em-
phasize certain characteristics of an image to display (partially) hidden information. Many techniques
have been developed for image filtering; the yearly image processing tutorials at SIGGRAPH are good
surveys of the state-of-the-art with application in multimedia-related fields. In this section we present
two related image processing techniques, binary morphology and convolution filters.

A.3.1 Binary Morphology. is a set of techniques used for binary operations on images. The binary
image often required by binary operations can be obtained through thresholding, a process where
pixels below a certain intensity are set to zero and the rest to one, effectively creating a binary image.
Typical examples of binary morphology operations include dilation, in which pixels are added to the
edge of an element in an image, and erosion, which does the opposite. By combining basic binary
operators, more useful complex operations can be achieved. For example, by first dilating an image
and then subtracting the original from the result, the final result depicts the edges of each element in
the original image.

A.3.2 Convolution Filters. are filters which can be represented by a simple image (function or dis-
crete dataset). Convolution is a mathematical operator on two functions or discrete datasets, where
one function is used to modify the other thereby creating a new function or discrete dataset. These
type of filters can be used for example to remove noise, smooth, sharpen, detect edges of objects, or
even detect the movement direction of objects in an image. Using convolution filters, a simple texture
can be manipulated to create a whole new texture, thereby saving storage space.
A.4 Spatial Algorithms (SA)
Spatial algorithms manipulate space to generate game content. The output is created by using an input
with structure, for example a grid, or self-recurrence. In this section we discuss tiling and layering, grid
subdivision, fractals, and Voronoi diagrams.

A.4.1 Tiling and Layering. Tiling is a technique used to create a game space by decomposing a
map into a grid. The grid is not limited to a rectangle-size–hexagonal shapes are also common. Grids
are 2D-data structures, but isometric projections can be coupled to grids to create the illusion of a 3D
map.

Layering is a technique that integrates into the same map several grids, called layers. A tile is then
constructed by overlapping parts from each layer, some of which may contain transparent parts. This
approach enables the creation of overlay effects, such as running water, and of 3D-looking game space
by using only a limited amount of source terrain textures.

A.4.2 Grid Subdivision. is an iterative and dynamic technique for object generation. An object
is first divided into a uniform grid with the appropriate textures. A grid subdivision algorithm, for
example the Patch-LOD algorithm [Pi et al. 2006], is used to iteratively add detail to the object. The
dynamic part of this technique links the iterative generation to the point of view–only the grid cells
that are closer to the current point of detail must be subdivided into smaller cells to create the required
level of detail. An example using this technique is the rendering of a procedurally generated terrain:
only the cells near the player are detailed (generated), while the rest of the terrain is more coarse,
thereby saving computation.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

Procedural Content Generation for Games: A Survey • 1:23

A.4.3 Fractals. are recursive figures which consist of copies of themselves, for example a Koch
snowflake. With fractals, a few parameters control a wide range of possible results. An advantage of
fractals is that objects with seemingly infinite detail can be stored as a simple recursive function.
The generation of fractals is a resource-intensive process, due to recursiveness. Using Iterated Func-
tion Systems, the resulting image can be generated faster, using an iterative rather than a recursive
process.

A.4.4 Voronoi Diagrams. [Aurenhammer 1991] are decompositions of metric spaces into parts
whose size and shape is determined by the position of seed points (points of interest) in the metric
space. The decomposition establishes borders of points equally distant from the closest seed points,
and territory containing exactly one seed point and all the locations for which the territory’s seed point
is the nearest point of interest. For a small map with a few points, a diagram can easily be calculated
using a iterative approach. However, when the collections of points increases in size, an improved com-
putational approach is required. A variety of algorithms have already been proposed to make Voronoi
diagrams usable in near-real-time [de Berg et al. 2008, Ch.7].
A.5 Modeling and Simulation of Complex Systems (CS)
It is impractical in some cases to describe natural phenomena with mathematical equations. Models
and simulations can be used to overcome this problem. In this section we describe cellular automata,
tensor fields, and agent-based simulation.

A.5.1 Cellular Automata. [Chopard and Droz 1998] A cellular automaton is a discrete computa-
tional model based on cells aligned in a grid, where each cell has a state and is subject to a common set
of rules. The computational model is applied at discrete time steps. The rules of the board determine
how cell neighborhood and state influence the next state of the cell. The resulting behavior can be
random, but also periodic.

Cellular automata can be combined with other systems to form new computational models. An ex-
ample of a combined system is a open L-system, a combination of cellular automata and L-systems. In
open L-systems, the behavior of the objects is largely determined by interaction with the environment
the object is in and by interaction with other objects in that environment [Hidalgo et al. 2008]. This
allows for the modeling of spatial constraints, such as the minimum distance between two objects.

A.5.2 Tensor Fields. [Chen et al. 2008, Sec.4] are two-dimensional generalizations of vectors,
which can be used to specify the shape of a game space. The tensors describe the direction of the
elevation of the map. Because tensor lines can be visualized, they are suitable for interactive design
and manipulation of road networks.

A.5.3 Agent-based Simulation. (ABS) [Davidsson 2001] is based on modeling a complex situation
using individuals, called agents. Emergent behavior, that is, complex behavior that arises out of rela-
tively simple agent interactions, is a feature of ABS that contrasts with the averaged behavior observ-
able through traditional modeling techniques. Agents can be added, removed, or replaced during the
simulation; agents may also learn in time.

A.5.4 Other Complex Systems and Theories. Many other complex systems and theories have and
may still make their way in procedural content generation for games, including theories of the dramatic
act (for story generation), of the cognitive process (for entity behavior), etc.
A.6 Artificial Intelligence (AI)
Artificial Intelligence is a large field in computer science which tries to mimic animal or human intel-
ligence. Examples include speech recognition, planning, and execution of physical tasks by robots.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

1:24 • M. Hendrikx et al.

A.6.1 Genetic Algorithms. (GA) [Goldberg 1989] are used to solve optimization problems by mim-
icking biological evolution. Possible solutions are coded as a strings (chromosomes), and a fitness func-
tion is used to evaluate the quality of a solution. A mutation and crossover function are applied to
create new solutions. The mutation function converts a solution in a new one. The crossover function
specifies exchange of chromosome parts between a set of parent chromosomes. The mutation rate and
crossover rate determine how frequent these operations occur.

For optimization problems, a pool of N initial candidate solutions is first generated. Next, each
solution is rated by using the fitness function, after which new N solutions are created by applying the
mutation and crossover functions on randomly selected sets of parents based on fitness. The process
continues until a satisfiable solution is found or until a predefined round count.

A.6.2 Artificial Neural Networks. (ANN) [Haykin 1994] are computational models with the ability
to learn the relationship between an input and output by minimizing the error between the output and
expected output. ANN’s can be used for finding patterns, and classifying, remembering, and structuring
data. An ANN consists of computational units called neurons, which are connected by weighted edges.
A single neuron can have several incoming and outgoing edges. When a neuron receives an input, it
first combines the inputs of all incoming edges and tests if it is triggered by this input. If the neuron is
triggered, it sends the combined signal over the output lines. The ANN functions in an environment,
which provides the input signals, processes the output signals, and calculates the error which the ANN
can use to adjust the weight on the edges and thereby learn.

A.6.3 Constraint Satisfaction and Planning. (CSP) [Russell et al. 1995] entails finding a path from
an initial state to a end state by applying actions. A planning problem consists of an initial state, ac-
tions, and a goal test. Planning Domain Definition Langugage (PDDL) is commonly used to express
planning problems. An action can be executed when the initial condition is satisfied. The effect of an
action can be the addition or deletion of variables resulting in a new state. Forward state-space search
algorithms start planning from the initial state. In contrast, backward state-space search algorithms
start in the final state. Despite both types of algorithms, planning is NP-hard in general, which ex-
plains the importance of heuristics in planning.

Received February 2011; revised July 2011; accepted —

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. -, No. -, Article 1, Publication date: February 2011.

