

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11136 Page 1 of 11

A Game AI Approach to Autonomous Control of Virtual Characters
Kevin Dill

Lockheed Martin
Burlington, MA 01803
kevin.dill@lmco.com

ABSTRACT

There is a strong need to develop Artificial Intelligence (AI) for virtual characters which are:

• Autonomous – able to function effectively with little or no human input at runtime
• Reactive – aware of and responsive to the evolving situation and the actions of the trainees
• Nondeterministic – the viewer should never see exactly the same thing twice
• Culturally Authentic – act as a person of the portrayed culture would
• Believable – maintain immersion by acting in a believably human way

This could greatly reduce the training costs, increase accessibility, and improve consistency.

As one aspect of the Future Immersive Training Environment Joint Capabilities Technology Demonstration we
created the “Angry Grandmother,” a mixed reality character portraying the elderly grandparent of an insurgent
whose home is entered and searched by the trainees. She needed to be believable, culturally authentic,
nondeterministic, and reactive within the limited scope of the scenario. In addition, she needed to be capable of
autonomy, but also responsive to direction from the instructor/operator.

The last 10 years have seen a dramatic improvement in the quality of the AI found in many video games; in our
opinion, game AI technology has reached a level of maturity at which it is applicable to immersive training.
Accordingly, we built an AI which combines Behavior Trees (BTs) and utility-based approaches. This approach is a
descendant of that used in several extremely successful video games, including the Zoo Tycoon 2 franchise, Iron
Man, and Red Dead Redemption.

This paper will present the AI architecture which we used for the Angry Grandmother, compare and contrast it to
relevant game AI approaches, and discuss its advantages particularly in terms of supporting rapid development of
autonomous, reactive characters, but also in terms of enabling that crucial dichotomy between autonomy and
operator control.

ABOUT THE AUTHORS

Kevin Dill is a staff software engineer at the Lockheed Martin Advanced Simulation Center. He is a recognized
expert on Game AI and a veteran of the game industry, with seven published titles under his belt. He was the
technical editor for Introduction to Game AI and Behavioral Mathematics for Game AI, and a section editor for AI
Game Programming Wisdom 4. He has taught classes on game development and game AI at Harvard University,
Boston University, and Worcester Polytechnic Institute.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11136 Page 2 of 11

A Game AI Approach to Autonomous Control of Virtual Characters
Kevin Dill

Lockheed Martin
Burlington, MA

kevin.dill@lmco.com

BACKGROUND

Infantry immersion training reproduces as accurately as
possible the environment to which the trainees will be
deployed. The intent is to recreate not only the physical
environment (the sights, the sounds, the smells), but
also the language, culture, and behaviors of the locals.
This approach has become increasingly popular in
recent years, largely due to its effectiveness in
preparing Marines and soldiers for contemporary
combat operations. It is conducted at a number of
locations, one of which is the Infantry Immersion
Trainer (IIT) at Marine Corps Base Camp Pendleton.

The IIT is a recreation of a small town similar to what
would be found in Iraq or Afghanistan. Since its
inception, it has relied heavily on human roleplayers to
act as the residents of that village. This has not been
entirely satisfactory. While the roleplayers do an
excellent job of providing realistic, culturally authentic
immersive characters, they require expenditures of
thousands of dollars each day. In addition, there are
certain vital roles that can’t easily be portrayed with
live roleplayers. Appropriate personnel may simply not
be available (as is often the case with the elderly), or
there may be legal and moral prohibitions against using
them (as is the case with children). Finally, human
roleplayers can deliver inconsistent results. While they
are typically quite good, they may do or say the wrong
thing at the wrong moment. We ultimately hope to
reach a point where the consistent reproducibility of
technological training experiences will prove superior
to the varying quality seen with human roleplayers.

To be successful, a technological alternative must at a
minimum provide effective training, hitting key training
objectives, just as a live roleplayer does. It must also
provide the same level of realism and cultural
authenticity, so as to avoid any significant loss in the
trainees’ sense of “being there.” Finally, a successful
solution should address the cost issue, reducing
manpower requirements. Thus, solutions which simply
replace roleplayers with operators are not viable.

With all of this in mind, our virtual characters need to
have at least the following characteristics:

• They need to be autonomous, able to operate with
little or no human input.

• They need to be reactive, which is to say that they
are visibly aware and responding to the ongoing
situation and the actions of the trainees.

• They need to be nondeterministic. Their actions
should random but reasonable, so that they are
not predictable or repetitive while still ensuring
that every action makes sense.

• They need to be culturally authentic, acting as a
person of the portrayed culture would.

• They need to be believable. The sense of
immersion must be maintained, so the characters
need to look and feel like a real human.

The Future Immersive Training Environment JCTD

The overall goal of the Future Immersive Training
Environment (FITE) Joint Capability Technology
Demonstration (JCTD) was to demonstrate that “by
simulating the immersive conditions of the combat
environment… we can improve tactical and ethical
decision-making by small unit leaders, increase small
unit operational effectiveness, improve individual
resiliency, and reduce casualties” (Muller 2010) Under
Spiral 2 of this JCTD we developed a wide variety of
technologies that were integrated into the IIT, many of
which helped to reduce the reliance on roleplayers. The
demonstration consisted of a series of five training
scenarios, which were used for live training of Marines
prior to their deployment to Afghanistan.

This paper focuses on a virtual character from the
fourth scenario in the series. In this scenario, the
trainees receive credible intelligence that an insurgent
stages regular illicit meetings in his home at the edge of
the village. Consequently, the trainees (with Afghan
soldiers attached) isolate and enter the insurgent’s home
with the intention of conducting a search and detaining
any enemy forces present. Unfortunately, the only
occupants are an elderly woman and her grandson, both
of whom are hostile but not violent.

The Angry Grandmother

The Angry Grandmother (“Granny”) character, shown
in Figure 1, is intended to introduce trainees to a non-

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11136 Page 3 of 11

cooperative character who challenges their
interpersonal skills (through the medium of an attached
interpreter), forces them to consider relevant cultural
training, tests their knowledge of detention criteria and
tactical questioning procedures, creates non-kinetic
complications during the conduct of a house search, and
stresses their judgment regarding when and how to
contact higher headquarters in an ambiguous situation.

An elderly woman and a child are ideally suited for this
role, putting the trainees in an ambiguous situation that
blends a known hostile location with belligerent, but
obviously nonthreatening, occupants. These roles
cannot be portrayed age appropriately by live
roleplayers. Consequently, we created a mixed reality
character, which is to say a life-size character, projected
on the wall, who appears to be in the room with the
trainees. She responds much as a live actor would.
Trainees can talk to her, threaten her, shoot her, order
her to surrender, question her about her grandson, and
so on. The ultimate goal is that interacting with her
should be no different from interacting with a human.

Previous mixed reality characters at the IIT have AI
that is heavily scripted, with minimal input from the
environment aside from the ability to detect shots fired,
making them most appropriate for use in kinetic “shoot
or no-shoot” scenarios requiring relatively short
interactions with the trainees. In contrast, the Angry
Grandmother is expected to remain active for ten
minutes or more. Over this time, she needs to remain
visually and behaviorally plausible, culturally
appropriate, and responsive to the ongoing situation and
to a broad set of possible trainee actions. Further, she
needs to act in such a way as to create the complex
training experience described above. Finally, the IIT’s
operators have many demands placed on their attention.
As a result, she needs to be able to act autonomously
and still present a credible performance. At the same
time, any AI is imperfect, and her sensing mechanisms
are fairly limited, so she also needs to remain
responsive to operator control.

During a typical run through the scenario, Granny
begins by calling out, asking the Marines to leave as
they knock on her door. When they enter, she screams
and flinches back, and then proceeds to berate them,
telling them that her family is innocent, that Americans
are unwelcome, and that they should leave her home.
She continues in this vein as the Marines search,
although her demeanor gradually changes as they get
closer to finding something, becoming less angry and
more anxious. She responds appropriately if threatened
or shot at, but she is too worked up to be rational, so if
the Marines try to talk to her then she just yells louder.

If the Marines find hidden contraband, Granny will
begin crying inconsolably. She continues to weep until
the Marines force her to surrender, at which point she
kneels on the ground with her hands on her head. The
Marines will then typically call in for instructions, and
be told to question her and then let her go.

In Dill and Dreger (2011) we gave an overview of the
systems that are involved in Granny’s operation. This
paper will focus specifically on her AI architecture.

AI ARCHITECTURE

The basic framework of our architecture is a modular,
hierarchical decision making approach, similar to the
popular Behavior Tree (BT) architecture, called the
Component Reasoner. It can support many approaches
to decision making, but we rely primarily on a utility-
based approach called the Weight-Based Reasoner.

The Component Reasoner

BTs, as realized in the context of game AI, were first
proposed by Damian Isla at the 2005 Game Developer’s
Conference. Since then they have exploded in
popularity, largely replacing Hierarchical Finite State
Machines (HFSMs) as the AI technology of choice for
many genres, particularly first-person shooters (FPSs).

A BT consists of a hierarchy of selectors, each of which
chooses among several options. These options can be
concrete (i.e., something the character will actually do),
or they can contain another selector which makes its
own decision. Control works its way down through the
tree of selectors until it arrives at a concrete option.

BTs have two major advantages. First, the hierarchical
approach is extremely powerful, avoiding spending
processing time on irrelevant decisions, and is a natural
way to structure the AI such that independent decisions

Figure 1: The Angry Grandmother and her grandson.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11136 Page 4 of 11

are decoupled. Second, the options are modular, which
is to say that a given option can appear multiple places
in the tree. This prevents the need to re-implement
functionality every place that it is used.

By design, BTs rely on simple Boolean discriminators
for their selectors. This simplifies implementation, but
puts a limit on how well the AI can examine the subtle
nuance of a situation before making a decision (Dill
2008). More generally, it has been our experience that
there are often cases where a more complex approach to
decision making should be used for a particular
decision, while retaining simplicity elsewhere (Dill,
Rabin, & Schwab, 2010). This was validated by a
recent Game Developers Conference panel (Dawe et.
al. 2010), which discussed the advantages and
disadvantages of several of the most popular AI
approaches and concluded that each of them works well
for some situations but poorly for others.

Thus we want a framework which retains the hierarchy
and modularity of the BT’s structure, but allows us to
employ complex decision makers where appropriate
while retaining support for simple selectors elsewhere.
The Component Reasoner does this by using reasoners
rather than selectors to make each decision.

The difference between a reasoner and a selector is
subtle but important. Selectors are expected to use
simple logic, such as taking the first valid option,
selecting each member of a sequence in order, or using
fixed probabilities (assigned a priori, not at runtime) to
make their decision. In contrast, a reasoner is allowed
to be arbitrarily complex. The only requirements are
that it be configurable via XML and that it support a
standard interface. Thus, nearly any approach to
decision making could be implemented as a reasoner.

The advantage of this approach is that it allows us to
select the most appropriate approach for each decision
being made. For decisions that are highly deterministic
we can use a BT-style selector. For decisions that
require us to weigh the relative advantages of several
possibilities, a utility-based approach will work well
(Dill and Mark 2010). For decisions which require us to
build complex sequences of actions, Goal Oriented
Action Planning (Orkin 2004) or Hierarchical Task
Network Planning (Gorniak 2007) might be used. In a
situation where the AI needs to learn from past results,
we might attempt something like Genetics-Based
Machine Learning (Harrison 2007). And so forth.

The root of the Component Reasoner contains a single
option. An option is a structure which contains one or
more actions, all of which will be executed if that
option is selected (the root option is always selected).
As in a BT, these actions may be concrete or they can

contain another reasoner. If they contain a reasoner, it
can use whatever approach makes the most sense for
that particular decision to pick from among its own
options. Control works its way from the root option
down through its actions to the reasoners they contain,
into the options those reasoners select, and so on until
we reach the concrete actions in the leaves.

It’s worth emphasizing that this structure supports
parallel execution. Because an option can contain
multiple actions, including multiple subreasoners, it can
do more than one thing – and even make more than one
set of decisions – at once. This is a capability which is
missing from all too many AI techniques.

All of the configuration data which drives a character’s
performance is contained in XML. We support limited
inheritance, allowing us to specify default XML for a
particular option, and then reference it (and overload
specific values, if needed) elsewhere. This data-driven
approach allows for rapid configuration without fear of
introducing code bugs or long recompiles.

While the Component Reasoner can support a wide
variety of reasoners, in practice we found that Granny
needed only two types: a simple sequence selector, and
the Weight-Based Reasoner.

The Weight-Based Reasoner

In keeping with our desire to create a nondeterministic
AI, we want our choices to be random but reasonable.
We also want to be reactive and believable, responding
to the current situation in a human-like way. Utility-
based AI works well for this. The Weight-Based
Reasoner is a modular, utility-based reasoner, and is our
primary mechanism for achieving the above. We
discuss the utility-based and modular aspects below.

Dual Utility AI
Utility-based approaches are widely used in games,
particularly games which have more complex decision
making to do, and which require autonomous, reactive
AI, such as strategy games (e.g. Civilization, Empire
Earth, Dawn of War), sandbox games (e.g. The Sims or
Zoo Tycoon), and those FPSs with more believable AI.

There are two common approaches to utility-based AI.
One is to score every option, perhaps including a
random component in that score, and then take the
option with the highest score. The second is to assign a
weight to every option, and then use weight-based
random selection to pick an option. With the latter
approach, the probability for selecting each option is
determined by dividing the weight for that option by the
total weight of all options. In other words, if you had
two options, one with a weight of 2 and one with a

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11136 Page 5 of 11

weight of 1, you would select the former 2/3 of the time
and the latter the remaining 1/3 of the time. Each of
these approaches has strengths and weaknesses, but past
experience has led us to believe that they are synergistic
when used together.

With this in mind, the Weight-Based Reasoner has two
utility values: force and weight. Both are calculated
dynamically at run time based on the current situation,
which is what allows the AI to be reactive to the
ongoing situation. Conceptually, force is used to divide
options into categories, where a category with higher
force is always preferred over one with lower force.
Weight, on the other hand, indicates how “good” an
option is – that is, how appropriate it is to the current
situation and, when it is appropriate, how likely it is to
succeed – relative to other options within the same
category. Thus an option that is completely irrelevant
will be given a weight of 0 and will not be selected.
One which is appropriate but unlikely to work, or which
is only marginally appropriate, is given a low weight.
One that is both very appropriate and very likely to
succeed is given a high weight.

When selecting an option we first eliminate any
completely inappropriate options (i.e. those with a
weight of 0). Next, we find the highest force category,
and eliminate all options that don’t belong to it. Third,
we narrow down our field to only the most reasonable
options by finding the weight of the best option, and
eliminating all options whose weight is significantly
below it. The exact meaning of “significantly below” is
data-driven, and is defined as a percentage of the best
weight, typically between 5% and 25%. At this point
we should have only reasonable options, but some may
still be better than others, so we use weight-based
random to select from among them.

Again, those steps are as follows:

1) Eliminate all options with a weight of 0.
2) Determine the highest force of any remaining

option, and eliminate all options with lower force.
3) Eliminate all options whose weight is less than

some percentage of the best remaining weight.
4) Use weight-based random selection to choose

from among the options that remain.

As an example of how this works in practice, consider
the options related to reacting to a grenade. These
options would have a high force, because reacting to a
grenade is more important than most other things (such
as reloading, firing at the enemy, or buying a
sandwich). Their weight reflects appropriateness and
chance of success. Thus if there is no grenade to react
to, the weights would be zero and the options would be
eliminated (despite the high force). If there is a grenade,

the weights of these options would depend on their
suitability given the details of the situation. Throwing
the grenade back or kicking it away is a bad choice if
the grenade lands out of reach, for example. Likewise,
diving on top of the grenade doesn’t make any sense if
there is nobody nearby to protect, or if everybody else
has cover. Diving behind cover is typically a good
option, but only if there is cover nearby.

During execution the AI for a particular character might
end up with diving behind cover, diving onto the
grenade, and throwing the grenade back as valid
options. These are all reasonable options, but they are
not equally likely to be selected. Diving behind cover
might have the highest weight, for example, throwing
the grenade back might have an intermediate weight,
and the weight for diving on the grenade might be quite
low. The weight based random selection will ensure
that the option with the highest weight is selected most
frequently, but that the others all have a chance of being
selected as well.

Modular Decision Making
The modular approach to decision making used in the
Weight Based Reasoner was first discussed in Game
Programming Gems 8 (Dill 2010). The key idea is that
the logic for a decision can be broken in to one or more
discrete considerations, where a consideration is a piece
of code which looks at one aspect of the situation in
isolation and then returns its evaluation in such a way
that it can be combined with that of other
considerations to drive the overall decision.

While there are a great many decisions that need to be
made by the AI, there are actually relatively few types
of considerations, and those considerations are reused
frequently from decision to decision. Thus,
considerations represent reusable patterns which can be
implemented once and then plugged together to create
decision-making logic.

Our implementation uses considerations which consist
of three parts: force, base weight, and multiplier. The
overall force of an option is the maximum of that of all
its considerations, while the option’s weight is
calculated by first adding the base weights together and
then multiplying by the multipliers. Thus, each
consideration can do any of the following:

• Assign the option to a higher force category by
returning the appropriate force value

• Eliminate the option by setting the multiplier to 0
• Add a positive or negative modifier to the base

weight
• Scale the weight with a multiplier that is not 1

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11136 Page 6 of 11

Figure 2: Granny’s utterance selection.

There are two major advantages to this approach. First,
it greatly reduces code duplication and standardizes the
implementation of each instance of a consideration.
This reduces the likelihood of bugs and simplifies the
task of fixing them (because each bug only has to be
fixed in one place). It also reduces the size of the code
base, making it easier to remember how things work.
Second, creating decision logic by plugging
considerations together is much faster than
implementing the same logic in C++ from scratch. This
makes sense, because we are dealing in larger chunks of
code, not writing things a line at a time. Thus, we are
able to create and to modify the Angry Grandmother’s
behavior extremely quickly. This allowed the AI team
to remain agile, responding to dramatic changes in
design right up to the last minute, although the need to
create animation and audio assets was a constraint.

Granny’s AI uses six standard types of considerations:

• The Tuning Consideration applies default values
which are set in XML and never change. If a
Tuning Consideration is not specified in XML
then a default one is created with a base weight of
1, a multiplier of 1, and a force of 0.

• The Timing Consideration evaluates how long
the option has been executing (if it is currently
executing), or how long it has been since it last
executed (if it is not executing). This can be used
to encourage the AI to continue executing an
option that it just picked (so that we don’t
immediately allow random selection to pick
something different), or to prevent us from
reselecting an option for a specified “cooldown”
period once it is completed (so we don’t repeat the
same action twice in close succession).

• The Hostile Fire Consideration returns specific
values when shots have been fired nearby.

• The Was Shot Consideration returns specific
values when the character is hit by gunfire.

• The External Variable Consideration tracks the
values of variables which can be set remotely.
These are used to allow external systems to
provide input to the AI.

• The Utterance Finished Consideration keeps
track of the current line of dialog being spoken,
and selects its values accordingly. In practice, it is
used to encourage Granny to continue executing
the option which triggered a line of speech until
that line of speech is finished (so that she doesn’t
interrupt herself or suffer repeated failures in
attempting to start a new utterance before the last
one completes).

As a simple example of how considerations are
combined to generate utility values, consider the option

which causes Granny to die when shot. This option has
a Was Shot consideration that sets the force to
1,000,000 if Granny has been shot, and sets the
multiplier to 0 otherwise. It uses the default Tuning
consideration. Thus, if she has been shot then this
option will have a force of 1,000,000 (from the Was
Shot consideration) and a weight of 1 (from the tuning
consideration). Since 1,000,000 is the highest force of
any option, this will result in this option always being
executed, no matter what else she might be doing at the
time (which is appropriate – death doesn’t wait for you
to finish your sentence). On the other hand, if Granny
has not been shot then this option will have a force of 0
(from the Tuning consideration) and a weight of 0 (due
to the multiplier on the Was Shot consideration). Thus
in this case the option will be eliminated during the first
step of evaluation.

UTTERANCE SELECTION

In this section we will discuss the logic used by Granny
to decide what to say. Figure 2 shows the corresponding
Component Reasoner layout. The root is shown to the
left, with the children of each option connected by a
solid arrow. A dotted arrow indicates an option whose
children are not shown. An option with no arrow has no
children. Thus, for example, the Rant option has three
children: Hot, Warm, and Cold. Cold has 26 children in
turn, each of which represents a distinct line of dialog.
Examples of cold lines include “You are frightening my
Grandson, you should go!”, “This is not helping, you
think we trust you?”, and “Go home American!” (all
spoken in Pashto).

Granny’s AI has only 9 top-level options. We divide
these options into three categories: behavioral states,
situational responses, and single lines of dialog. The
key conceptual difference is that behavioral states
define Granny’s overall performance, and she stays in
them over the long term (often many minutes). In
contrast, situational responses and single lines of dialog

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11136 Page 7 of 11

take control only briefly, typically for a single line of
dialog. When they finish, control returns to the current
behavioral state. All of this is accomplished through
appropriate use of the considerations.

Behavioral States

The Angry Grandmother has five behavioral states:

• Stand and Listen: This is the default state.
Granny simply stands quietly in place.

• Rant: Granny berates the Marines in an attempt to
get them to leave. This state is used while the
Marines search the room. It has four substates:
o Marines Enter: Played the first time Marines

come into the room. Granny screams and
launches into her tirade.

o Cold: Marines are not close to finding
anything, and Granny is mostly angry.

o Warm: Marines are getting closer, and
Granny is getting nervous.

o Hot: Marines are about to find something.
Granny is very anxious.

• Inconsolable: Granny cries inconsolably,
beseeching Allah to help her poor grandson.

• Surrender: Granny places her hands on her head
and kneels on the floor.

• Dead: If shot, Granny will die.

In most cases, transition to a particular state results
either from an operator hitting a button in the
Instructor/Operator Station (IOS), or from a Marine
moving into a particular location.

Regardless of the trigger, the result is that a remote
system (the IOS or the tracking system) will set the
“GrannyMood” variable to a specific value, indicating
the need to change to a particular state (0 for Stand &
Listen, 1 for Rant, 2 for Inconsolable, etc.). This is
detected using an External Variable consideration

When the action begins execution, it sets GrannyMood
to an alternate value (100 for Stand & Listen, 101 for
Rant, 102 for Inconsolable, etc.). This second set of
values is necessary to keep track of the currently
executing state so that we can return to it after a
situational response or single line of dialog is selected.

With that in mind, the full set of considerations driving
the selection of most of these options is as follows:

• A Tuning consideration, which sets a force of -1,
base weight of 1, and multiplier of 1. We ensure
that there is always an option with a force of 0
available (discussed below), so if this force isn’t
overridden by one of the other considerations then
the associated option will not be selected.

• An External Variable consideration, which
watches for the GrannyMood variable to indicate
that a new request has occurred, and sets the force
to 10 when it does.

• A second External Variable consideration, which
checks the GrannyMood variable to see if this is
the currently executing state, and sets the force to
3 when it does.

Thus, the currently executing state will have a force of
3. When it is time to change that state, the GrannyMood
variable will be set accordingly and the corresponding
option will be assigned a force of 10. Otherwise, any
unselected state will have a force of -1.

There are two exceptions to the above pattern. First, the
Stand & Listen state has a default force of 0, rather than
-1. Thus if there is no other option with a positive force,
this one will always be selected. This only happens
when the simulation first starts up (after that, there is
always a currently executing state). Second, the Dead
state is selected as described in the previous section.

Situational Responses

We identified three common situations which merit a
response from Granny:

• Marines Knock: This response is played when
the Marines knock on Granny’s door, or if they
stand outside for an extended period of time.

• Marines Talk: If the Marines try to talk to
Granny while she is ranting, these lines can be
used to “shout them down.”

• Marines Threaten: This response is used if the
Marines threaten Granny, point weapons at her, or
fire their weapons nearby.

Situational responses are generally selected by the
operator, although Marines Knock can be triggered
from the tracking data, and Marines Threaten is
automatically triggered if shots are fired nearby. Thus,
like the behavioral states, these actions are typically
triggered when an external variable, in this case
“MarineAction” is set to a corresponding value. Note
that we do not use the GrannyMood variable, because
we want to retain knowledge of the currently selected
state.

The considerations are as follows:

• A Tuning consideration, which sets a force of -1,
the same as we have for the behavioral states.

• An External Variable consideration, which sets
the force to 10 when the action is activated.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11136 Page 8 of 11

• An Utterance Finished consideration which sets
the force to 7 until the line of dialog is complete.

In addition, the Marines Threaten response has a Was
Shot consideration which can set force to 10.

Thus, these actions will not be selected until the
External Variable (or Was Shot) consideration sets their
force to 10. Their default force of -1 will always lose to
the force of 0 assigned to the Stand and Listen state.
Once started, their force will be 7 until the line of
dialog is complete, at which point it goes back to -1 and
the current behavioral state (which still has a force of 3)
will resume.

Single Lines of Dialog

In addition to the above, we have roughly 40 different
lines of dialog which are intended to be used toward the
end of the scenario, when the Marines are questioning
Granny. These include everything from simple “yes,”
“no,” and “I don’t know” answers to more detailed
responses to likely questions (e.g. “That’s just medicine
for my headaches!”). These lines can only be triggered
by an operator, and the considerations for them are
identical to those described for situational responses.

Selecting a Sound File

So far we have discussed only the decision making at
the top level of the reasoner – that is, the selection
between the 9 options shown all the way to the left in
Figure 2. A few of these (Stand & Listen, Surrender,
and Dead) are concrete actions which take direct
control of the performance. The remainder contain
subreasoners. In most cases, the subreasoners pick the
specific line to play from within a larger pool.

The simplest examples of this are the single lines of
dialog. It may be that Granny will use the same line
many times in close succession, particularly for generic
lines like “yes” or “I don’t know.” When this occurs,
we don’t want the user to hear the exact same sound
file, with the exact same intonation, as this obvious
repetition may break the suspension of disbelief.
Instead, we recorded many versions of each line. We
use a sequence selector (instead of a weight-based
reasoner) to select the actual line to use. This selector
returns each of the lines in a pre-specified order. In the
unlikely event that all of the lines have been used, the
sequence starts over with the first line. This maximizes
the time before a given sound file is reused.

The selection of dialog for the situational responses can
be a bit more complex. One advantage of the weight-
based reasoner is that it allows us to define complex
sequences with relative ease. Marines Knock is one

example of this. In this case, we have seven utterances
that we want to play in a specific order, which become
increasingly irate. In addition, we have six more
utterances that can be randomly selected if the Marines
continue to knock. The expectation is that the Marines
won’t knock more than seven times, but we need to be
prepared for this eventuality.

Remember that due to the hierarchical nature of the
Component Reasoner, these options are only evaluated
against one another, not against any of the higher level
options. This allows us to isolate the decision to play a
response from the selection of the actual response to
play, which makes configuration much easier. With that
in mind, the initial seven responses have the following
three considerations:

• A Tuning consideration sets their force to 7, 6, 5,
4, 3, 2, or 1, defining the order in which they will
be played.

• An Utterance Finished consideration sets their
force to 9 while they are playing, preventing the
selection of a new line before the old one ends.

• A Timing consideration applies a multiplier of 0
after the first time the option finishes, with a
cooldown of 31,536,000 seconds (one year). This
ensures that each line will only play once.

The six follow-on responses are similar, except that
they all have a force of 0 and their cooldown is only 20
seconds. Thus they will be chosen at random, but the
same line won’t be used twice in close succession.

Other reasoners, such as that for the Inconsolable state
and the remaining situational responses, have similar
configurations, although the details vary. For the Rant
state, Marines Enter is always selected first, and then
the remaining options are selected as described below.

Tracking the Marines

The FITE effort includes two systems which track the
position of all participants, including the Marines. The
first is a 6 Degree of Freedom (DOF) system that uses
four helmet-mounted cameras to track the position and
orientation of the user’s head with extreme accuracy.
The second is an RFID system which is much less
intrusive on the user, but also much less accurate.

We can use this information by setting up “trigger
zones” which set predefined values on external
variables when one or more Marines are inside of them.
Figure 3 shows Granny’s room, including the
approximate position of her image on the wall and the
four caches of contraband, as well as the trigger zones.
Those zones are as follows:

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11136 Page 9 of 11

• The Alleyway Zone covers the gated entryway
just outside of Granny’s room. When triggered,
Granny will periodically play a Marines Knock
response with a 20-45 second cooldown.

• The Entrance Zones trigger when Marines first
enter the room and select the Rant state.

• The Cold Zone covers the entire room. When
Marines are in this zone (but not in the Warm or
Hot Zones) then Granny will play her Cold
performance, as described above.

• The Warm Zone is an area that is closer to
Granny and the major caches. When Marines are
in this zone (but not in the Hot zone), Granny will
play her Warm performance.

• The Hot Zones are placed either right on top of a
cache, or right in front of Granny. When Marines
are in one of more of these zones, Granny will
play her Hot performance.

The logic driving the state selection triggered by these
zones uses the same sorts of consideration
configurations as we described above. Validity is
checked using External Variable considerations,
prioritizing between simultaneously valid options uses
Tuning considerations, and we ensure that an option
that has just been selected continues for a reasonable
amount of time and prevent options from being
reselected too quickly using Timing considerations.

Unfortunately, while the tracking systems were
tremendous successes in other portions of the effort,
this approach was not as successful we might have
hoped. There were two major challenges. The first
problem was that the more accurate 6 DOF system was
only worn by a few participants – typically the squad
and team leaders. The RFID system was not only less
accurate, but also extremely noisy. As a result, we got
nearly constant false positives on the triggers – to the
point where Granny would often begin her performance
when the Marines were simply walking down the street
outside her house, and once they entered she would
immediately go into her “Hot” performance regardless
of whether a Marine was standing in that area of the
room. We experimented with a variety of techniques for
addressing the noise, including shrinking the trigger
zones, providing gates that have to be triggered first
(the Entrance Zones in Figure 3), and smoothing the
input, but we only managed to reduce the frequency of
false positives – and at the same time, we introduced so
much latency that Granny’s reactions were markedly
late, significantly decreasing believability.

The second problem is that when you have four or five
Marines packed into one small room they tend to stand
everywhere. Thus the fact that somebody is standing
right next to a cache of contraband doesn’t necessarily

mean that they are close to finding it – it might just be
the easiest place to get out of everybody else’s way.
The 6 DOF system provides detailed information on the
location and orientation of the head, which might have
been sufficient to overcome this problem if all Marines
had been wearing it, but that was not the case. A more
robust alternative is discussed in Future Work, below.

Tracking Alternatives

Given the challenges associated with the use of tracking
data, we implemented a version of Granny which relies
exclusively on operator control for most decisions. This
puts a heavy load on the operator to closely track the
situation and respond in a timely fashion, but does
appear to result in good training.

The one decision that is still not operator controlled is
the transition between the Hot, Warm, and Cold states
within the Rant performance. We felt that the operator
had enough to do, so instead we just allow Granny to
choose between these randomly. This is done using a
default Tuning consideration, as well as a Timing
consideration which applies a higher force for 20-30
seconds after she enters a new state.

ANIMATION SELECTION

Just as we worked hard to avoid repetitive dialog
selection, if we want Granny to be believable then we
need to avoid repetitive animation selection as well.
Animations are expensive to produce, however – much
more expensive than lines of dialog – and thus our pool
of resources is limited. Fortunately, animation blending
technology allows us to select multiple different
animations and combine them, creating a performance

Figure 3: A map of Granny’s room, with trigger zones.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11136 Page 10 of 11

that is unique even though the individual animations
being played have all been used before.

With this in mind, we created separate base pose,
gesture, pacing, lipsynch, blinking, and emotion
animations, each of which can be selected
independently of the others. Thus if we reuse a gesture
animation, for example, it’s likely that the pacing
animation or the base pose will be different, changing
the overall motion of the character. We also use short
animations where possible, and use random but
reasonable selection to choose among them. Thus when
you see a particular gesture –a hand wave, for example,
or reaching for the sky while beseeching Allah – the
gestures immediately before and after it are likely to be
different, again making the overall motion feel
different.

Of course, we do have certain lines of dialog that are
only used once, and which mark big moments in
Granny’s performance. The “Marines Enter”
performance played when Granny first enters the Rant
state is one example, and there’s a similar performances
the first time Marines Threaten, Marines Talk, or
Inconsolable are selected. Since these lines are only
used once, it’s fine to have a very distinctive full-body
animation associated with them – and doing so not only
enhances believability by further breaking up any
repetition, but also draws the user’s attention to these
important moments by having her motions become
even larger and more dramatic.

Unfortunately, there is not sufficient space to describe
the details of animation selection in this paper. In brief,
we created several decoupled animation managers, such
as the gesture manager and the pacing manager. Each of
these used a weight-based reasoner to handle random
but reasonable selection of the animations under its
control.

RESULTS

We ran a number of squads through the IIT using the
FITE technology over the course of this effort, and an
independent evaluation was conducted to determine the
efficacy of the various technologies.

The evaluation cites the Angry Grandmother as the only
system which all participants agreed provided good
animation realism. Other systems rated included the
animatronics, VISTA screen, and CHAOS room. In
addition, they quote one squad leader as saying “the
angry [grandmother] acted exactly like women I
experienced in country.” (Gerrond & Reist 2011)

Another success was the ease of modification. The
modular approach taken, as well as the data-driven

design of the IOS, allowed us to quickly change the AI
and associated controls as the design of the scenario
changed. For example, late in the project we were asked
to produce an alternate scenario in which Granny had a
gun. Building the AI and operator controls took less
than two days.

One significant challenge is the expense of creating the
audio and animation assets. Although we were able to
reconfigure the AI and scenario to support a gun very
quickly, for example creating the associated animations
took quite a bit longer. This pattern was consistent
throughout Granny’s development – AI configuration
was always much faster than asset creation. In the long
run, the obvious solution is to build a library of assets
that can be reused across projects. Some libraries exist,
but they often don’t include the assets that we need, are
not of the quality that we need, or put other constraints
on the project (such as requiring the use of VBS2).

As discussed above, the tracking data was not as useful
as we had hoped. Although this limited the amount of
autonomy which we were able to provide within the
scope of the JCTD, we have ongoing work which may
address this issue.

FUTURE WORK

While we are pleased with our results, there is always
more to do. The following are a few areas which we
hope to investigate in order to further improve our
virtual human technology.

We have been experimenting with the Microsoft
Kinect, and early results are promising. We believe that
this could ultimately provide more accurate tracking of
characters than the RFID system, but without any
Marine-carried hardware (such as the helmet-mounted
cameras required for the 6 DOF tracking system).
Furthermore, we could apply computer vision
technology (Yang et. al. 2008) to track head orientation,
weapon orientation, the exact moment when a door is
opened, and perhaps even changes to the geometry of
the room which indicate the progress of the Marines
toward finding the contraband caches. This additional
data could allow us to automate the majority of
Granny’s performance, with the exception of the single
lines of dialog played during interrogation at the end of
the scenario.

Furthermore, we could use voice recognition software
to listen for specific phrases from the translator, and use
those phrases to drive some of the specific lines of
dialog, allowing us to automate the interrogation as
well. Any unrecognized questions could be answered
with “I don’t know!” or a similar line. Parsa, another
mixed reality character created by Alelo for FITE

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11136 Page 11 of 11

JCTD, showed good results for recognizing a limited
set of specific phrases (Saunders 2011).

In both cases, we would still want to keep a human
operator in the mix, and allow them to override the AI
when appropriate, but this would allow us to automate
responses when an operator isn’t available, and to make
Granny’s reactions to big events more immediate.

CONCLUSION

We have presented a game AI-based approach to
control of a mixed reality character. It uses a random
but reasonable approach to decision making which
endeavors to eliminate or disguise reuse of assets,
resulting in a non-repetitive, believable character. It
mixes autonomous and operator control cleanly,
allowing the character to function independently while
preserving the ability of the operator to take control if
they wish. Where appropriate the AI is utility-based,
which allows us to create AI which is highly reactive,
evaluating the situation and responding appropriately.
Finally, it is built using assets gathered from Afghan
natives, resulting in a culturally authentic performance.

ACKNOWLEDGEMENTS

The author would like to thank TEC, ONR, JFCOM,
and JIEDDO for their support of this work. In addition,
we would like to thank all the participants of the FITE
JCTD, and especially the staff of Alelo and Sarnoff
who directly contributed to Granny, for their
tremendous efforts in making this demonstration a
resounding success. Finally, we would like to thank the
US Marine Corps and the staff of the IIT for their
patience and support in allowing us the use of their
facility while still executing a heavy training schedule.

REFERENCES

Dawe, M., Champandard, A., Mark, D., Rich, C., &
Rabin, S. (2010). Deciding on an AI Architecture:
Which Tool for the Job. Game Developer’s
Conference.

Dill, K. (2008). Embracing Declarative AI with a Goal
Based Approach. AI Game Programming Wisdom 4.
Boston, Massachusetts: Cengage Learning.

Dill, K. (2010). A Pattern-Based Approach to Modular
AI for Games. Game Programming Gems 8. Boston,
Massachusetts: Cengage Learning.

Dill, K., & Dreger, O. (2011). Building an Angry
Grandmother. Spring Simulation Interoperability
Workshop.

Dill, K. & Mark, D. (2010). Improving AI Decision
Modeling through Utility Theory. Game Developer’s
Conference.

Dill, K., Rabin, S., & Schwab, B. (2010). AI
Architecture Mashups: Insights into Intertwined
Architectures. Game Developer’s Conference.

Gorniak, P. & Davis, I (2007). SquadSmart: Hierarchical
Planning and Coordinated Plan Execution for Squads
of Characters. Proceedings, The Third Artificial
Intelligence and Interactive Digital Entertainment
Conference.

Harrison, G. (2007). Genetically Programmed Learning
Classifier System Description and Results. Genetic
and Evolutionary Computation Conference
Proceedings

Isla, D. (2005). Handling Complexity in the Halo 2 AI.
Game Developer’s Conference and retrieved April
25, 2011, from http://www.gamasutra.com/
gdc2005/features/20050311/isla_01.shtml.

Gerrond J. & Reist J. (2011). Future Immersive Training
Environment Joint Capabilities Demonstration
Operational Demonstration 2 Independent
Assessment Report. Prepared for the Joint
Technology Assessment Activity on behalf of the
United States Joint Forces Command

Mark, D. (2009). Behavioral Mathematics for Game AI,
Boston, Massachusetts: Cengage Learning.

Muller, P. (2010). The Future Immersive Training
Environment (FITE) JCTD: Improving Readiness
Through Innovation. Intraservice/Industry Training,
Simulation & Education Conference.

Orkin, J. (2004). Applying Goal Oriented Action
Planning to Games. AI Game Programming Wisdom
2. Boston, Massachusetts: Cengage Learning.

Saunders, K. et. al. (2011). Cultural Training in a Mixed
Reality Environment. HSCB Focus.

Yang, P., Liu, Q., Cui, X., & Metaxas, D.N. (2008).
Facial expression recognition using encoded dynamic
features. IEEE Conference on Computer Vision and
Pattern Recognition.

