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ABSTRACT 

There is a strong need to develop Artificial Intelligence (AI) for virtual characters which are: 

• Autonomous – able to function effectively with little or no human input at runtime 
• Reactive – aware of and responsive to the evolving situation and the actions of the trainees 
• Nondeterministic – the viewer should never see exactly the same thing twice 
• Culturally Authentic – act as a person of the portrayed culture would 
• Believable – maintain immersion by acting in a believably human way 

This could greatly reduce the training costs, increase accessibility, and improve consistency.  

As one aspect of the Future Immersive Training Environment Joint Capabilities Technology Demonstration we 
created the “Angry Grandmother,” a mixed reality character portraying the elderly grandparent of an insurgent 
whose home is entered and searched by the trainees. She needed to be believable, culturally authentic, 
nondeterministic, and reactive within the limited scope of the scenario. In addition, she needed to be capable of 
autonomy, but also responsive to direction from the instructor/operator. 

The last 10 years have seen a dramatic improvement in the quality of the AI found in many video games; in our 
opinion, game AI technology has reached a level of maturity at which it is applicable to immersive training. 
Accordingly, we built an AI which combines Behavior Trees (BTs) and utility-based approaches. This approach is a 
descendant of that used in several extremely successful video games, including the Zoo Tycoon 2 franchise, Iron 
Man, and Red Dead Redemption. 

This paper will present the AI architecture which we used for the Angry Grandmother, compare and contrast it to 
relevant game AI approaches, and discuss its advantages particularly in terms of supporting rapid development of 
autonomous, reactive characters, but also in terms of enabling that crucial dichotomy between autonomy and 
operator control. 
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BACKGROUND 

Infantry immersion training reproduces as accurately as 
possible the environment to which the trainees will be 
deployed. The intent is to recreate not only the physical 
environment (the sights, the sounds, the smells), but 
also the language, culture, and behaviors of the locals. 
This approach has become increasingly popular in 
recent years, largely due to its effectiveness in 
preparing Marines and soldiers for contemporary 
combat operations. It is conducted at a number of 
locations, one of which is the Infantry Immersion 
Trainer (IIT) at Marine Corps Base Camp Pendleton.  

The IIT is a recreation of a small town similar to what 
would be found in Iraq or Afghanistan. Since its 
inception, it has relied heavily on human roleplayers to 
act as the residents of that village. This has not been 
entirely satisfactory. While the roleplayers do an 
excellent job of providing realistic, culturally authentic 
immersive characters, they require expenditures of 
thousands of dollars each day. In addition, there are 
certain vital roles that can’t easily be portrayed with 
live roleplayers. Appropriate personnel may simply not 
be available (as is often the case with the elderly), or 
there may be legal and moral prohibitions against using 
them (as is the case with children). Finally, human 
roleplayers can deliver inconsistent results. While they 
are typically quite good, they may do or say the wrong 
thing at the wrong moment. We ultimately hope to 
reach a point where the consistent reproducibility of 
technological training experiences will prove superior 
to the varying quality seen with human roleplayers. 

To be successful, a technological alternative must at a 
minimum provide effective training, hitting key training 
objectives, just as a live roleplayer does. It must also 
provide the same level of realism and cultural 
authenticity, so as to avoid any significant loss in the 
trainees’ sense of “being there.” Finally, a successful 
solution should address the cost issue, reducing 
manpower requirements. Thus, solutions which simply 
replace roleplayers with operators are not viable.  

With all of this in mind, our virtual characters need to 
have at least the following characteristics: 

• They need to be autonomous, able to operate with 
little or no human input. 

• They need to be reactive, which is to say that they 
are visibly aware and responding to the ongoing 
situation and the actions of the trainees. 

• They need to be nondeterministic. Their actions 
should random but reasonable, so that they are 
not predictable or repetitive while still ensuring 
that every action makes sense.  

• They need to be culturally authentic, acting as a 
person of the portrayed culture would. 

• They need to be believable. The sense of 
immersion must be maintained, so the characters 
need to look and feel like a real human.  

The Future Immersive Training Environment JCTD 

The overall goal of the Future Immersive Training 
Environment (FITE) Joint Capability Technology 
Demonstration (JCTD) was to demonstrate that “by 
simulating the immersive conditions of the combat 
environment… we can improve tactical and ethical 
decision-making by small unit leaders, increase small 
unit operational effectiveness, improve individual 
resiliency, and reduce casualties” (Muller 2010) Under 
Spiral 2 of this JCTD we developed a wide variety of 
technologies that were integrated into the IIT, many of 
which helped to reduce the reliance on roleplayers. The 
demonstration consisted of a series of five training 
scenarios, which were used for live training of Marines 
prior to their deployment to Afghanistan.  

This paper focuses on a virtual character from the 
fourth scenario in the series. In this scenario, the 
trainees receive credible intelligence that an insurgent 
stages regular illicit meetings in his home at the edge of 
the village. Consequently, the trainees (with Afghan 
soldiers attached) isolate and enter the insurgent’s home 
with the intention of conducting a search and detaining 
any enemy forces present. Unfortunately, the only 
occupants are an elderly woman and her grandson, both 
of whom are hostile but not violent.  

The Angry Grandmother 

The Angry Grandmother (“Granny”) character, shown 
in Figure 1, is intended to introduce trainees to a non-
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cooperative character who challenges their 
interpersonal skills (through the medium of an attached 
interpreter), forces them to consider relevant cultural 
training, tests their knowledge of detention criteria and 
tactical questioning procedures, creates non-kinetic 
complications during the conduct of a house search, and 
stresses their judgment regarding when and how to 
contact higher headquarters in an ambiguous situation.  

An elderly woman and a child are ideally suited for this 
role, putting the trainees in an ambiguous situation that 
blends a known hostile location with belligerent, but 
obviously nonthreatening, occupants. These roles 
cannot be portrayed age appropriately by live 
roleplayers. Consequently, we created a mixed reality 
character, which is to say a life-size character, projected 
on the wall, who appears to be in the room with the 
trainees. She responds much as a live actor would. 
Trainees can talk to her, threaten her, shoot her, order 
her to surrender, question her about her grandson, and 
so on. The ultimate goal is that interacting with her 
should be no different from interacting with a human. 

Previous mixed reality characters at the IIT have AI 
that is heavily scripted, with minimal input from the 
environment aside from the ability to detect shots fired, 
making them most appropriate for use in kinetic “shoot 
or no-shoot” scenarios requiring relatively short 
interactions with the trainees. In contrast, the Angry 
Grandmother is expected to remain active for ten 
minutes or more. Over this time, she needs to remain 
visually and behaviorally plausible, culturally 
appropriate, and responsive to the ongoing situation and 
to a broad set of possible trainee actions. Further, she 
needs to act in such a way as to create the complex 
training experience described above. Finally, the IIT’s 
operators have many demands placed on their attention. 
As a result, she needs to be able to act autonomously 
and still present a credible performance. At the same 
time, any AI is imperfect, and her sensing mechanisms 
are fairly limited, so she also needs to remain 
responsive to operator control. 

During a typical run through the scenario, Granny 
begins by calling out, asking the Marines to leave as 
they knock on her door. When they enter, she screams 
and flinches back, and then proceeds to berate them, 
telling them that her family is innocent, that Americans 
are unwelcome, and that they should leave her home. 
She continues in this vein as the Marines search, 
although her demeanor gradually changes as they get 
closer to finding something, becoming less angry and 
more anxious. She responds appropriately if threatened 
or shot at, but she is too worked up to be rational, so if 
the Marines try to talk to her then she just yells louder. 

If the Marines find hidden contraband, Granny will 
begin crying inconsolably. She continues to weep until 
the Marines force her to surrender, at which point she 
kneels on the ground with her hands on her head. The 
Marines will then typically call in for instructions, and 
be told to question her and then let her go.  

In Dill and Dreger (2011) we gave an overview of the 
systems that are involved in Granny’s operation. This 
paper will focus specifically on her AI architecture.  

AI ARCHITECTURE 

The basic framework of our architecture is a modular, 
hierarchical decision making approach, similar to the 
popular Behavior Tree (BT) architecture, called the 
Component Reasoner. It can support many approaches 
to decision making, but we rely primarily on a utility-
based approach called the Weight-Based Reasoner.  

The Component Reasoner  

BTs, as realized in the context of game AI, were first 
proposed by Damian Isla at the 2005 Game Developer’s 
Conference. Since then they have exploded in 
popularity, largely replacing Hierarchical Finite State 
Machines (HFSMs) as the AI technology of choice for 
many genres, particularly first-person shooters (FPSs).  

A BT consists of a hierarchy of selectors, each of which 
chooses among several options. These options can be 
concrete (i.e., something the character will actually do), 
or they can contain another selector which makes its 
own decision. Control works its way down through the 
tree of selectors until it arrives at a concrete option.  

BTs have two major advantages. First, the hierarchical 
approach is extremely powerful, avoiding spending 
processing time on irrelevant decisions, and is a natural 
way to structure the AI such that independent decisions 

Figure 1: The Angry Grandmother and her grandson. 
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are decoupled. Second, the options are modular, which 
is to say that a given option can appear multiple places 
in the tree. This prevents the need to re-implement 
functionality every place that it is used.  

By design, BTs rely on simple Boolean discriminators 
for their selectors. This simplifies implementation, but 
puts a limit on how well the AI can examine the subtle 
nuance of a situation before making a decision (Dill 
2008). More generally, it has been our experience that 
there are often cases where a more complex approach to 
decision making should be used for a particular 
decision, while retaining simplicity elsewhere (Dill, 
Rabin, & Schwab, 2010). This was validated by a 
recent Game Developers Conference panel (Dawe et. 
al. 2010), which discussed the advantages and 
disadvantages of several of the most popular AI 
approaches and concluded that each of them works well 
for some situations but poorly for others. 

Thus we want a framework which retains the hierarchy 
and modularity of the BT’s structure, but allows us to 
employ complex decision makers where appropriate 
while retaining support for simple selectors elsewhere. 
The Component Reasoner does this by using reasoners 
rather than selectors to make each decision.  

The difference between a reasoner and a selector is 
subtle but important. Selectors are expected to use 
simple logic, such as taking the first valid option, 
selecting each member of a sequence in order, or using 
fixed probabilities (assigned a priori, not at runtime) to 
make their decision. In contrast, a reasoner is allowed 
to be arbitrarily complex. The only requirements are 
that it be configurable via XML and that it support a 
standard interface. Thus, nearly any approach to 
decision making could be implemented as a reasoner.  

The advantage of this approach is that it allows us to 
select the most appropriate approach for each decision 
being made. For decisions that are highly deterministic 
we can use a BT-style selector. For decisions that 
require us to weigh the relative advantages of several 
possibilities, a utility-based approach will work well 
(Dill and Mark 2010). For decisions which require us to 
build complex sequences of actions, Goal Oriented 
Action Planning (Orkin 2004) or Hierarchical Task 
Network Planning (Gorniak 2007) might be used. In a 
situation where the AI needs to learn from past results, 
we might attempt something like Genetics-Based 
Machine Learning (Harrison 2007). And so forth.  

The root of the Component Reasoner contains a single 
option. An option is a structure which contains one or 
more actions, all of which will be executed if that 
option is selected (the root option is always selected). 
As in a BT, these actions may be concrete or they can 

contain another reasoner. If they contain a reasoner, it 
can use whatever approach makes the most sense for 
that particular decision to pick from among its own 
options. Control works its way from the root option 
down through its actions to the reasoners they contain, 
into the options those reasoners select, and so on until 
we reach the concrete actions in the leaves. 

It’s worth emphasizing that this structure supports 
parallel execution. Because an option can contain 
multiple actions, including multiple subreasoners, it can 
do more than one thing – and even make more than one 
set of decisions – at once. This is a capability which is 
missing from all too many AI techniques.  

All of the configuration data which drives a character’s 
performance is contained in XML. We support limited 
inheritance, allowing us to specify default XML for a 
particular option, and then reference it (and overload 
specific values, if needed) elsewhere. This data-driven 
approach allows for rapid configuration without fear of 
introducing code bugs or long recompiles. 

While the Component Reasoner can support a wide 
variety of reasoners, in practice we found that Granny 
needed only two types: a simple sequence selector, and 
the Weight-Based Reasoner.  

The Weight-Based Reasoner 

In keeping with our desire to create a nondeterministic 
AI, we want our choices to be random but reasonable. 
We also want to be reactive and believable, responding 
to the current situation in a human-like way. Utility-
based AI works well for this. The Weight-Based 
Reasoner is a modular, utility-based reasoner, and is our 
primary mechanism for achieving the above. We 
discuss the utility-based and modular aspects below. 

Dual Utility AI 
Utility-based approaches are widely used in games, 
particularly games which have more complex decision 
making to do, and which require autonomous, reactive 
AI, such as strategy games (e.g. Civilization, Empire 
Earth, Dawn of War), sandbox games (e.g. The Sims or 
Zoo Tycoon), and those FPSs with more believable AI.  

There are two common approaches to utility-based AI. 
One is to score every option, perhaps including a 
random component in that score, and then take the 
option with the highest score. The second is to assign a 
weight to every option, and then use weight-based 
random selection to pick an option. With the latter 
approach, the probability for selecting each option is 
determined by dividing the weight for that option by the 
total weight of all options. In other words, if you had 
two options, one with a weight of 2 and one with a 
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weight of 1, you would select the former 2/3 of the time 
and the latter the remaining 1/3 of the time. Each of 
these approaches has strengths and weaknesses, but past 
experience has led us to believe that they are synergistic 
when used together.  

With this in mind, the Weight-Based Reasoner has two 
utility values: force and weight. Both are calculated 
dynamically at run time based on the current situation, 
which is what allows the AI to be reactive to the 
ongoing situation. Conceptually, force is used to divide 
options into categories, where a category with higher 
force is always preferred over one with lower force. 
Weight, on the other hand, indicates how “good” an 
option is – that is, how appropriate it is to the current 
situation and, when it is appropriate, how likely it is to 
succeed – relative to other options within the same 
category. Thus an option that is completely irrelevant 
will be given a weight of 0 and will not be selected. 
One which is appropriate but unlikely to work, or which 
is only marginally appropriate, is given a low weight. 
One that is both very appropriate and very likely to 
succeed is given a high weight.  

When selecting an option we first eliminate any 
completely inappropriate options (i.e. those with a 
weight of 0). Next, we find the highest force category, 
and eliminate all options that don’t belong to it. Third, 
we narrow down our field to only the most reasonable 
options by finding the weight of the best option, and 
eliminating all options whose weight is significantly 
below it. The exact meaning of “significantly below” is 
data-driven, and is defined as a percentage of the best 
weight, typically between 5% and 25%. At this point 
we should have only reasonable options, but some may 
still be better than others, so we use weight-based 
random to select from among them.  

Again, those steps are as follows: 

1) Eliminate all options with a weight of 0. 
2) Determine the highest force of any remaining 

option, and eliminate all options with lower force. 
3) Eliminate all options whose weight is less than 

some percentage of the best remaining weight.  
4) Use weight-based random selection to choose 

from among the options that remain. 

As an example of how this works in practice, consider 
the options related to reacting to a grenade. These 
options would have a high force, because reacting to a 
grenade is more important than most other things (such 
as reloading, firing at the enemy, or buying a 
sandwich). Their weight reflects appropriateness and 
chance of success. Thus if there is no grenade to react 
to, the weights would be zero and the options would be 
eliminated (despite the high force). If there is a grenade, 

the weights of these options would depend on their 
suitability given the details of the situation. Throwing 
the grenade back or kicking it away is a bad choice if 
the grenade lands out of reach, for example. Likewise, 
diving on top of the grenade doesn’t make any sense if 
there is nobody nearby to protect, or if everybody else 
has cover. Diving behind cover is typically a good 
option, but only if there is cover nearby.  

During execution the AI for a particular character might 
end up with diving behind cover, diving onto the 
grenade, and throwing the grenade back as valid 
options. These are all reasonable options, but they are 
not equally likely to be selected. Diving behind cover 
might have the highest weight, for example, throwing 
the grenade back might have an intermediate weight, 
and the weight for diving on the grenade might be quite 
low. The weight based random selection will ensure 
that the option with the highest weight is selected most 
frequently, but that the others all have a chance of being 
selected as well.  

Modular Decision Making 
The modular approach to decision making used in the 
Weight Based Reasoner was first discussed in Game 
Programming Gems 8 (Dill 2010). The key idea is that 
the logic for a decision can be broken in to one or more 
discrete considerations, where a consideration is a piece 
of code which looks at one aspect of the situation in 
isolation and then returns its evaluation in such a way 
that it can be combined with that of other 
considerations to drive the overall decision.  

While there are a great many decisions that need to be 
made by the AI, there are actually relatively few types 
of considerations, and those considerations are reused 
frequently from decision to decision. Thus, 
considerations represent reusable patterns which can be 
implemented once and then plugged together to create 
decision-making logic. 

Our implementation uses considerations which consist 
of three parts: force, base weight, and multiplier. The 
overall force of an option is the maximum of that of all 
its considerations, while the option’s weight is 
calculated by first adding the base weights together and 
then multiplying by the multipliers. Thus, each 
consideration can do any of the following: 

• Assign the option to a higher force category by 
returning the appropriate force value 

• Eliminate the option by setting the multiplier to 0 
• Add a positive or negative modifier to the base 

weight 
• Scale the weight with a multiplier that is not 1 
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Figure 2: Granny’s utterance selection. 

There are two major advantages to this approach. First, 
it greatly reduces code duplication and standardizes the 
implementation of each instance of a consideration. 
This reduces the likelihood of bugs and simplifies the 
task of fixing them (because each bug only has to be 
fixed in one place). It also reduces the size of the code 
base, making it easier to remember how things work. 
Second, creating decision logic by plugging 
considerations together is much faster than 
implementing the same logic in C++ from scratch. This 
makes sense, because we are dealing in larger chunks of 
code, not writing things a line at a time. Thus, we are 
able to create and to modify the Angry Grandmother’s 
behavior extremely quickly. This allowed the AI team 
to remain agile, responding to dramatic changes in 
design right up to the last minute, although the need to 
create animation and audio assets was a constraint. 

Granny’s AI uses six standard types of considerations:  

• The Tuning Consideration applies default values 
which are set in XML and never change. If a 
Tuning Consideration is not specified in XML 
then a default one is created with a base weight of 
1, a multiplier of 1, and a force of 0. 

• The Timing Consideration evaluates how long 
the option has been executing (if it is currently 
executing), or how long it has been since it last 
executed (if it is not executing). This can be used 
to encourage the AI to continue executing an 
option that it just picked (so that we don’t 
immediately allow random selection to pick 
something different), or to prevent us from 
reselecting an option for a specified “cooldown” 
period once it is completed (so we don’t repeat the 
same action twice in close succession). 

• The Hostile Fire Consideration returns specific 
values when shots have been fired nearby.  

• The Was Shot Consideration returns specific 
values when the character is hit by gunfire. 

• The External Variable Consideration tracks the 
values of variables which can be set remotely. 
These are used to allow external systems to 
provide input to the AI.  

• The Utterance Finished Consideration keeps 
track of the current line of dialog being spoken, 
and selects its values accordingly. In practice, it is 
used to encourage Granny to continue executing 
the option which triggered a line of speech until 
that line of speech is finished (so that she doesn’t 
interrupt herself or suffer repeated failures in 
attempting to start a new utterance before the last 
one completes). 

As a simple example of how considerations are 
combined to generate utility values, consider the option 

which causes Granny to die when shot. This option has 
a Was Shot consideration that sets the force to 
1,000,000 if Granny has been shot, and sets the 
multiplier to 0 otherwise. It uses the default Tuning 
consideration. Thus, if she has been shot then this 
option will have a force of 1,000,000 (from the Was 
Shot consideration) and a weight of 1 (from the tuning 
consideration). Since 1,000,000 is the highest force of 
any option, this will result in this option always being 
executed, no matter what else she might be doing at the 
time (which is appropriate – death doesn’t wait for you 
to finish your sentence). On the other hand, if Granny 
has not been shot then this option will have a force of 0 
(from the Tuning consideration) and a weight of 0 (due 
to the multiplier on the Was Shot consideration). Thus 
in this case the option will be eliminated during the first 
step of evaluation. 

UTTERANCE SELECTION 

In this section we will discuss the logic used by Granny 
to decide what to say. Figure 2 shows the corresponding 
Component Reasoner layout. The root is shown to the 
left, with the children of each option connected by a 
solid arrow. A dotted arrow indicates an option whose 
children are not shown. An option with no arrow has no 
children. Thus, for example, the Rant option has three 
children: Hot, Warm, and Cold. Cold has 26 children in 
turn, each of which represents a distinct line of dialog. 
Examples of cold lines include “You are frightening my 
Grandson, you should go!”, “This is not helping, you 
think we trust you?”, and “Go home American!” (all 
spoken in Pashto).  

Granny’s AI has only 9 top-level options. We divide 
these options into three categories: behavioral states, 
situational responses, and single lines of dialog. The 
key conceptual difference is that behavioral states 
define Granny’s overall performance, and she stays in 
them over the long term (often many minutes). In 
contrast, situational responses and single lines of dialog 
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take control only briefly, typically for a single line of 
dialog. When they finish, control returns to the current 
behavioral state. All of this is accomplished through 
appropriate use of the considerations. 

Behavioral States 

The Angry Grandmother has five behavioral states:  

• Stand and Listen: This is the default state. 
Granny simply stands quietly in place.  

• Rant: Granny berates the Marines in an attempt to 
get them to leave. This state is used while the 
Marines search the room. It has four substates: 
o Marines Enter: Played the first time Marines 

come into the room. Granny screams and 
launches into her tirade. 

o Cold: Marines are not close to finding 
anything, and Granny is mostly angry. 

o Warm: Marines are getting closer, and 
Granny is getting nervous.  

o Hot: Marines are about to find something. 
Granny is very anxious. 

• Inconsolable: Granny cries inconsolably, 
beseeching Allah to help her poor grandson.  

• Surrender: Granny places her hands on her head 
and kneels on the floor.  

• Dead: If shot, Granny will die. 

In most cases, transition to a particular state results 
either from an operator hitting a button in the 
Instructor/Operator Station (IOS), or from a Marine 
moving into a particular location.  

Regardless of the trigger, the result is that a remote 
system (the IOS or the tracking system) will set the 
“GrannyMood” variable to a specific value, indicating 
the need to change to a particular state (0 for Stand & 
Listen, 1 for Rant, 2 for Inconsolable, etc.). This is 
detected using an External Variable consideration 

When the action begins execution, it sets GrannyMood 
to an alternate value (100 for Stand & Listen, 101 for 
Rant, 102 for Inconsolable, etc.). This second set of 
values is necessary to keep track of the currently 
executing state so that we can return to it after a 
situational response or single line of dialog is selected. 

With that in mind, the full set of considerations driving 
the selection of most of these options is as follows:  

• A Tuning consideration, which sets a force of -1, 
base weight of 1, and multiplier of 1. We ensure 
that there is always an option with a force of 0 
available (discussed below), so if this force isn’t 
overridden by one of the other considerations then 
the associated option will not be selected. 

• An External Variable consideration, which 
watches for the GrannyMood variable to indicate 
that a new request has occurred, and sets the force 
to 10 when it does. 

• A second External Variable consideration, which 
checks the GrannyMood variable to see if this is 
the currently executing state, and sets the force to 
3 when it does.  

Thus, the currently executing state will have a force of 
3. When it is time to change that state, the GrannyMood 
variable will be set accordingly and the corresponding 
option will be assigned a force of 10. Otherwise, any 
unselected state will have a force of -1. 

There are two exceptions to the above pattern. First, the 
Stand & Listen state has a default force of 0, rather than 
-1. Thus if there is no other option with a positive force, 
this one will always be selected. This only happens 
when the simulation first starts up (after that, there is 
always a currently executing state). Second, the Dead 
state is selected as described in the previous section. 

Situational Responses 

We identified three common situations which merit a 
response from Granny: 

• Marines Knock: This response is played when 
the Marines knock on Granny’s door, or if they 
stand outside for an extended period of time.  

• Marines Talk: If the Marines try to talk to 
Granny while she is ranting, these lines can be 
used to “shout them down.”  

• Marines Threaten: This response is used if the 
Marines threaten Granny, point weapons at her, or 
fire their weapons nearby.  

Situational responses are generally selected by the 
operator, although Marines Knock can be triggered 
from the tracking data, and Marines Threaten is 
automatically triggered if shots are fired nearby. Thus, 
like the behavioral states, these actions are typically 
triggered when an external variable, in this case 
“MarineAction” is set to a corresponding value. Note 
that we do not use the GrannyMood variable, because 
we want to retain knowledge of the currently selected 
state.  

The considerations are as follows: 

• A Tuning consideration, which sets a force of -1, 
the same as we have for the behavioral states.  

• An External Variable consideration, which sets 
the force to 10 when the action is activated. 
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• An Utterance Finished consideration which sets 
the force to 7 until the line of dialog is complete. 

In addition, the Marines Threaten response has a Was 
Shot consideration which can set force to 10. 

Thus, these actions will not be selected until the 
External Variable (or Was Shot) consideration sets their 
force to 10. Their default force of -1 will always lose to 
the force of 0 assigned to the Stand and Listen state. 
Once started, their force will be 7 until the line of 
dialog is complete, at which point it goes back to -1 and 
the current behavioral state (which still has a force of 3) 
will resume. 

Single Lines of Dialog 

In addition to the above, we have roughly 40 different 
lines of dialog which are intended to be used toward the 
end of the scenario, when the Marines are questioning 
Granny. These include everything from simple “yes,” 
“no,” and “I don’t know” answers to more detailed 
responses to likely questions (e.g. “That’s just medicine 
for my headaches!”). These lines can only be triggered 
by an operator, and the considerations for them are 
identical to those described for situational responses. 

Selecting a Sound File 

So far we have discussed only the decision making at 
the top level of the reasoner – that is, the selection 
between the 9 options shown all the way to the left in 
Figure 2. A few of these (Stand & Listen, Surrender, 
and Dead) are concrete actions which take direct 
control of the performance. The remainder contain 
subreasoners. In most cases, the subreasoners pick the 
specific line to play from within a larger pool. 

The simplest examples of this are the single lines of 
dialog. It may be that Granny will use the same line 
many times in close succession, particularly for generic 
lines like “yes” or “I don’t know.” When this occurs, 
we don’t want the user to hear the exact same sound 
file, with the exact same intonation, as this obvious 
repetition may break the suspension of disbelief. 
Instead, we recorded many versions of each line. We 
use a sequence selector (instead of a weight-based 
reasoner) to select the actual line to use. This selector 
returns each of the lines in a pre-specified order. In the 
unlikely event that all of the lines have been used, the 
sequence starts over with the first line. This maximizes 
the time before a given sound file is reused. 

The selection of dialog for the situational responses can 
be a bit more complex. One advantage of the weight-
based reasoner is that it allows us to define complex 
sequences with relative ease. Marines Knock is one 

example of this. In this case, we have seven utterances 
that we want to play in a specific order, which become 
increasingly irate. In addition, we have six more 
utterances that can be randomly selected if the Marines 
continue to knock. The expectation is that the Marines 
won’t knock more than seven times, but we need to be 
prepared for this eventuality. 

Remember that due to the hierarchical nature of the 
Component Reasoner, these options are only evaluated 
against one another, not against any of the higher level 
options. This allows us to isolate the decision to play a 
response from the selection of the actual response to 
play, which makes configuration much easier. With that 
in mind, the initial seven responses have the following 
three considerations: 

• A Tuning consideration sets their force to 7, 6, 5, 
4, 3, 2, or 1, defining the order in which they will 
be played. 

• An Utterance Finished consideration sets their 
force to 9 while they are playing, preventing the 
selection of a new line before the old one ends.  

• A Timing consideration applies a multiplier of 0 
after the first time the option finishes, with a 
cooldown of 31,536,000 seconds (one year). This 
ensures that each line will only play once. 

The six follow-on responses are similar, except that 
they all have a force of 0 and their cooldown is only 20 
seconds. Thus they will be chosen at random, but the 
same line won’t be used twice in close succession.  

Other reasoners, such as that for the Inconsolable state 
and the remaining situational responses, have similar 
configurations, although the details vary. For the Rant 
state, Marines Enter is always selected first, and then 
the remaining options are selected as described below. 

Tracking the Marines 

The FITE effort includes two systems which track the 
position of all participants, including the Marines. The 
first is a 6 Degree of Freedom (DOF) system that uses 
four helmet-mounted cameras to track the position and 
orientation of the user’s head with extreme accuracy. 
The second is an RFID system which is much less 
intrusive on the user, but also much less accurate.  

We can use this information by setting up “trigger 
zones” which set predefined values on external 
variables when one or more Marines are inside of them. 
Figure 3 shows Granny’s room, including the 
approximate position of her image on the wall and the 
four caches of contraband, as well as the trigger zones. 
Those zones are as follows: 
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• The Alleyway Zone covers the gated entryway 
just outside of Granny’s room. When triggered, 
Granny will periodically play a Marines Knock 
response with a 20-45 second cooldown.  

• The Entrance Zones trigger when Marines first 
enter the room and select the Rant state.  

• The Cold Zone covers the entire room. When 
Marines are in this zone (but not in the Warm or 
Hot Zones) then Granny will play her Cold 
performance, as described above. 

• The Warm Zone is an area that is closer to 
Granny and the major caches. When Marines are 
in this zone (but not in the Hot zone), Granny will 
play her Warm performance.  

• The Hot Zones are placed either right on top of a 
cache, or right in front of Granny. When Marines 
are in one of more of these zones, Granny will 
play her Hot performance. 

The logic driving the state selection triggered by these 
zones uses the same sorts of consideration 
configurations as we described above. Validity is 
checked using External Variable considerations, 
prioritizing between simultaneously valid options uses 
Tuning considerations, and we ensure that an option 
that has just been selected continues for a reasonable 
amount of time and prevent options from being 
reselected too quickly using Timing considerations. 

Unfortunately, while the tracking systems were 
tremendous successes in other portions of the effort, 
this approach was not as successful we might have 
hoped. There were two major challenges. The first 
problem was that the more accurate 6 DOF system was 
only worn by a few participants – typically the squad 
and team leaders. The RFID system was not only less 
accurate, but also extremely noisy. As a result, we got 
nearly constant false positives on the triggers – to the 
point where Granny would often begin her performance 
when the Marines were simply walking down the street 
outside her house, and once they entered she would 
immediately go into her “Hot” performance regardless 
of whether a Marine was standing in that area of the 
room. We experimented with a variety of techniques for 
addressing the noise, including shrinking the trigger 
zones, providing gates that have to be triggered first 
(the Entrance Zones in Figure 3), and smoothing the 
input, but we only managed to reduce the frequency of 
false positives – and at the same time, we introduced so 
much latency that Granny’s reactions were markedly 
late, significantly decreasing believability.  

The second problem is that when you have four or five 
Marines packed into one small room they tend to stand 
everywhere. Thus the fact that somebody is standing 
right next to a cache of contraband doesn’t necessarily 

mean that they are close to finding it – it might just be 
the easiest place to get out of everybody else’s way. 
The 6 DOF system provides detailed information on the 
location and orientation of the head, which might have 
been sufficient to overcome this problem if all Marines 
had been wearing it, but that was not the case. A more 
robust alternative is discussed in Future Work, below. 

Tracking Alternatives 

Given the challenges associated with the use of tracking 
data, we implemented a version of Granny which relies 
exclusively on operator control for most decisions. This 
puts a heavy load on the operator to closely track the 
situation and respond in a timely fashion, but does 
appear to result in good training.  

The one decision that is still not operator controlled is 
the transition between the Hot, Warm, and Cold states 
within the Rant performance. We felt that the operator 
had enough to do, so instead we just allow Granny to 
choose between these randomly. This is done using a 
default Tuning consideration, as well as a Timing 
consideration which applies a higher force for 20-30 
seconds after she enters a new state.  

ANIMATION SELECTION 

Just as we worked hard to avoid repetitive dialog 
selection, if we want Granny to be believable then we 
need to avoid repetitive animation selection as well. 
Animations are expensive to produce, however – much 
more expensive than lines of dialog – and thus our pool 
of resources is limited. Fortunately, animation blending 
technology allows us to select multiple different 
animations and combine them, creating a performance 

Figure 3: A map of Granny’s room, with trigger zones. 
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that is unique even though the individual animations 
being played have all been used before. 

With this in mind, we created separate base pose, 
gesture, pacing, lipsynch, blinking, and emotion 
animations, each of which can be selected 
independently of the others. Thus if we reuse a gesture 
animation, for example, it’s likely that the pacing 
animation or the base pose will be different, changing 
the overall motion of the character. We also use short 
animations where possible, and use random but 
reasonable selection to choose among them. Thus when 
you see a particular gesture –a hand wave, for example, 
or reaching for the sky while beseeching Allah – the 
gestures immediately before and after it are likely to be 
different, again making the overall motion feel 
different.  

Of course, we do have certain lines of dialog that are 
only used once, and which mark big moments in 
Granny’s performance. The “Marines Enter” 
performance played when Granny first enters the Rant 
state is one example, and there’s a similar performances 
the first time Marines Threaten, Marines Talk, or 
Inconsolable are selected. Since these lines are only 
used once, it’s fine to have a very distinctive full-body 
animation associated with them – and doing so not only 
enhances believability by further breaking up any 
repetition, but also draws the user’s attention to these 
important moments by having her motions become 
even larger and more dramatic. 

Unfortunately, there is not sufficient space to describe 
the details of animation selection in this paper. In brief, 
we created several decoupled animation managers, such 
as the gesture manager and the pacing manager. Each of 
these used a weight-based reasoner to handle random 
but reasonable selection of the animations under its 
control.  

RESULTS 

We ran a number of squads through the IIT using the 
FITE technology over the course of this effort, and an 
independent evaluation was conducted to determine the 
efficacy of the various technologies.  

The evaluation cites the Angry Grandmother as the only 
system which all participants agreed provided good 
animation realism. Other systems rated included the 
animatronics, VISTA screen, and CHAOS room. In 
addition, they quote one squad leader as saying “the 
angry [grandmother] acted exactly like women I 
experienced in country.” (Gerrond & Reist 2011) 

Another success was the ease of modification. The 
modular approach taken, as well as the data-driven 

design of the IOS, allowed us to quickly change the AI 
and associated controls as the design of the scenario 
changed. For example, late in the project we were asked 
to produce an alternate scenario in which Granny had a 
gun. Building the AI and operator controls took less 
than two days. 

One significant challenge is the expense of creating the 
audio and animation assets. Although we were able to 
reconfigure the AI and scenario to support a gun very 
quickly, for example creating the associated animations 
took quite a bit longer. This pattern was consistent 
throughout Granny’s development – AI configuration 
was always much faster than asset creation. In the long 
run, the obvious solution is to build a library of assets 
that can be reused across projects. Some libraries exist, 
but they often don’t include the assets that we need, are 
not of the quality that we need, or put other constraints 
on the project (such as requiring the use of VBS2). 

As discussed above, the tracking data was not as useful 
as we had hoped. Although this limited the amount of 
autonomy which we were able to provide within the 
scope of the JCTD, we have ongoing work which may 
address this issue.  

FUTURE WORK 

While we are pleased with our results, there is always 
more to do. The following are a few areas which we 
hope to investigate in order to further improve our 
virtual human technology. 

We have been experimenting with the Microsoft 
Kinect, and early results are promising. We believe that 
this could ultimately provide more accurate tracking of 
characters than the RFID system, but without any 
Marine-carried hardware (such as the helmet-mounted 
cameras required for the 6 DOF tracking system). 
Furthermore, we could apply computer vision 
technology (Yang et. al. 2008) to track head orientation, 
weapon orientation, the exact moment when a door is 
opened, and perhaps even changes to the geometry of 
the room which indicate the progress of the Marines 
toward finding the contraband caches. This additional 
data could allow us to automate the majority of 
Granny’s performance, with the exception of the single 
lines of dialog played during interrogation at the end of 
the scenario. 

Furthermore, we could use voice recognition software 
to listen for specific phrases from the translator, and use 
those phrases to drive some of the specific lines of 
dialog, allowing us to automate the interrogation as 
well. Any unrecognized questions could be answered 
with “I don’t know!” or a similar line. Parsa, another 
mixed reality character created by Alelo for FITE 
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JCTD, showed good results for recognizing a limited 
set of specific phrases (Saunders 2011). 

In both cases, we would still want to keep a human 
operator in the mix, and allow them to override the AI 
when appropriate, but this would allow us to automate 
responses when an operator isn’t available, and to make 
Granny’s reactions to big events more immediate. 

CONCLUSION 

We have presented a game AI-based approach to 
control of a mixed reality character. It uses a random 
but reasonable approach to decision making which 
endeavors to eliminate or disguise reuse of assets, 
resulting in a non-repetitive, believable character. It 
mixes autonomous and operator control cleanly, 
allowing the character to function independently while 
preserving the ability of the operator to take control if 
they wish. Where appropriate the AI is utility-based, 
which allows us to create AI which is highly reactive, 
evaluating the situation and responding appropriately. 
Finally, it is built using assets gathered from Afghan 
natives, resulting in a culturally authentic performance.  

ACKNOWLEDGEMENTS 

The author would like to thank TEC, ONR, JFCOM, 
and JIEDDO for their support of this work. In addition, 
we would like to thank all the participants of the FITE 
JCTD, and especially the staff of Alelo and Sarnoff 
who directly contributed to Granny, for their 
tremendous efforts in making this demonstration a 
resounding success. Finally, we would like to thank the 
US Marine Corps and the staff of the IIT for their 
patience and support in allowing us the use of their 
facility while still executing a heavy training schedule. 

REFERENCES  

Dawe, M., Champandard, A., Mark, D., Rich, C., & 
Rabin, S. (2010). Deciding on an AI Architecture: 
Which Tool for the Job. Game Developer’s 
Conference. 

Dill, K. (2008). Embracing Declarative AI with a Goal 
Based Approach. AI Game Programming Wisdom 4. 
Boston, Massachusetts: Cengage Learning. 

Dill, K. (2010). A Pattern-Based Approach to Modular 
AI for Games. Game Programming Gems 8. Boston, 
Massachusetts: Cengage Learning. 

Dill, K., & Dreger, O. (2011). Building an Angry 
Grandmother. Spring Simulation Interoperability 
Workshop. 

Dill, K. & Mark, D. (2010). Improving AI Decision 
Modeling through Utility Theory. Game Developer’s 
Conference. 

Dill, K., Rabin, S., & Schwab, B. (2010). AI 
Architecture Mashups: Insights into Intertwined 
Architectures. Game Developer’s Conference. 

Gorniak, P. & Davis, I (2007). SquadSmart: Hierarchical 
Planning and Coordinated Plan Execution for Squads 
of Characters. Proceedings, The Third Artificial 
Intelligence and Interactive Digital Entertainment 
Conference.  

Harrison, G. (2007). Genetically Programmed Learning 
Classifier System Description and Results. Genetic 
and Evolutionary Computation Conference 
Proceedings 

Isla, D. (2005). Handling Complexity in the Halo 2 AI. 
Game Developer’s Conference and retrieved April 
25, 2011, from http://www.gamasutra.com/ 
gdc2005/features/20050311/isla_01.shtml. 

Gerrond J. & Reist J. (2011). Future Immersive Training 
Environment Joint Capabilities Demonstration 
Operational Demonstration 2 Independent 
Assessment Report. Prepared for the Joint 
Technology Assessment Activity on behalf of the 
United States Joint Forces Command  

Mark, D. (2009). Behavioral Mathematics for Game AI, 
Boston, Massachusetts: Cengage Learning. 

Muller, P. (2010). The Future Immersive Training 
Environment (FITE) JCTD: Improving Readiness 
Through Innovation. Intraservice/Industry Training, 
Simulation & Education Conference. 

Orkin, J. (2004). Applying Goal Oriented Action 
Planning to Games. AI Game Programming Wisdom 
2. Boston, Massachusetts: Cengage Learning. 

Saunders, K. et. al. (2011). Cultural Training in a Mixed 
Reality Environment. HSCB Focus. 

Yang, P., Liu, Q., Cui, X., & Metaxas, D.N. (2008). 
Facial expression recognition using encoded dynamic 
features. IEEE Conference on Computer Vision and 
Pattern Recognition. 

 


