Planning

CS 4100/5100

deciding what to do and what order to do it in

Foundations of Al

results!

STOP, KEEP, START

Stop, Keep, Start: Results

12

10

i Keep
2 I - N Ll - & Stop
I Start
0 L || I [ol || L
) X)) S X S 5) 2 e 5 5
«(‘\QQO 6\0% 6‘6 & &Q& ({\\\é’o %(\Q} (&o o\Q’é oQQ &\e 6&« N \QOQ& 6\\(\% q;\:b@ (\bé
2 2> o 2 13 & e < X & o < \
\& Qg, (@) 0\ (\QO 6\ ,bQo Q . Q Qe & &v > K® ((\
4 N " o S > A\ O & Lo) e @
N & (;OQ/ <% rz}“('o N & & & Ol Q@Qo é\& &
NS AN F & & F PSS L © P
F 9 & § & & P ¥ & Q°© W
& & & O R o &
+’b Q X -Q KC) <
& & KON & 5%
,b°g’ ¢ O Q W@
- O \\
& Q
2

Spreading Out Deadlines

12

10

i Keep
2 I - N Ll 2 = y & Stop
I Start
0 L || I [ol 2 y | || L
& 2 £ o o & < X S) e e 5 s, Q& 5
& < Q ¥ Q X Y Q < < . <
Q}(\\ %6\000 S (,\@ Q,é Qg'b% c) ((‘\\ %(@ g (QQ, O\Q/(J &OQ\ 8\\(\ Q}’:& & \\0\3 P @\Q é_q, .(\b@
SR G & & L & g o SN Ry & &
o o X S Q
S & F Qo\ & 0\§ 6@6 666’\ &b 6‘& ° N\ KOQO 3¢ N
'2}\(\ \((\ 66") ((\\Q > & O 6O S 0\\) O @Q @\ 6\(\
N RO O R IV ° &
((\Q % ° > OQ (QQ \Q\Q’ Q\\
+° © g K O &
¢ «Q Q C Q &
& IS &S & &
& S o ° ?f;)"’
v, (J’b Q\
&
(2

Readings/Participation

12

10

4
i Keep

2 2 B | B N 1 N ¥ - & Stop
I Start

0 ' L /L || B I /L || el || L

X X
S SN A - LW N T S R S R Iy
SO & ° & S L F SN \ N SN N &
\& Qg, (@) 0\ & @Q/ ,bQo . Q Q/\ & &v > K® ((\
2 & AN\ Q)) S > A\ > N 5 0(\ N () &
& &0 ¢ & Y (,00 ¥ be’o) S R & KOQO & N
&’ \ 6"’9 & & & . & >° » 50\ X \} >
\ & & & N Q N SR & Q S &
™ > X o © (G S <) @ \\
Q C () OQ Q A\ X
,b((\ o% 2) A\S) Qo
) R Q C Q &
& QS & P S o
2 < o Q° Cx
0 & v
O
S o
(2

Different Programming Languages

12

10

i Keep
2 I - L - - Ll - & Stop
I / Start
. L \ 1 /R 1 i = i B
& o 5 5 S &% X X S 5 S e @ S % S
R I P S O T
> > 9 < S < < < \& Q
\& Qg, (@) 0\ (\QO 6\ ,bQo Q . Q Qe & &v > K® ((\
Z & 5 NG < > S ¥ & & < & &
N) rz}“('o S F ¥ &S F Q@Qo Q\& S
NS AN F & & F PSS L © P
F T & & & F P T E W° N
& & & O R o &
+’b Q X -Q KC) <
& & KON & 5%
,b°g’ ¢ O Q W@
- O \)
& Q
2

REVIEW

Goal-Based Agents

)

What the world
is like now

|

What it will be like
if | do aption A

J

What action |

shouidido now |

l

Aclualors

JuswuoJiAug

/

Knowledge Representation

4 TS DI D

Q—low the world evolves

What the world ‘

is like now
m
What it will be like 2
A v ons =
What my actions do if | do action A =
] O
-
3
®
What action | ‘?’
S Vhat action
Goals -[should do now |

l

KAgent Aclualors ——— -

/

Inference, Abduction, Constraint Solving

S ——
e

State

Q—low the world evolveQ —

What my actions doé
\

)

!

What the world
is like now

|

What it will be like
if | do action A

|

What action |

shouidido now |

l

Aclualors

JuswuoJiAug

/

Inference, Abduction, Constraint Solving

)

What the world
is like now

|

J

What action |

A
Aclualors

shouidido now |

JuswuoJiAug

/

Al Planning

What are my goals?

What do | currently know?

How do | plan my actions to reach my goals?

What if the world changes?

Planning Applications

Planning Applications

Planning Applications

\

Planning Applications

...and many more!

Forest fire management

Playing games

Factory automation

Network security

STRIPS PLANNING

Al Planning

Description of a planning problem
Way to describe the world
Initial state
Goal description
Set of possible actions to change the world

Result: generate a plan

Sequence of actions for changing the initial state
into the goal state

The Frame Problem

| go from home to the store — new situation S’

The Frame Problem

| go from home to the store — new situation S’

In S’
The store still sells chips
My age is still the same
Star Trek is still excellent

Santa Cruz is still a weird beach town
Boston is still cold

How can we efficiently represent everything
that doesn’t change?

The Ramification Problem

| go from home to the store — new situation S’

In S’
| am now in West Roxbury
The store has one more person in it
My head is now in the store
My legs are now in the store
The contents of my pockets are now in the store...

That’s a lot of effects for an action!

Ramification problem:
Some facts must be inferred based on world state

Frame problem:

Facts are assumed to persist between states
unless changed

All comes down to knowledge engineering!

What actions are available?

How do they change the state of the world?

Example Problem: Blocks World

initial state goal state

Example Problem: Blocks World

initial state goal state

Represent these states in first order logic

What actions are available?

How do they change the state of the world?

Language for Planning Representation

PDDL — Planning Domain Description Language

Planning operators to achieve goals

Preconditions

Effects

Add list
Delete list

Subset of first-order logic

Example Problem: Blocks World

initial state goal state

What are the actions?

Example Problem: Blocks World

initial state goal state

And what are their preconditions?

Example Problem: Blocks World

initial state goal state

And what are their effects?

Finding a Plan: Searching Forwards

Depth-first search
Better ways to do this? Stay tuned for next lecture!

Starting from the initial state:
Pick an operator with satisfied preconditions
Apply it to update state
Expand tree to include updated state descriptions
Continue search with updated state as current

Stop when you find the goal within a state
description
Fail when you’ve checked everything

Finding a Plan: Searching Forwards

Initial state:

on(C, A) ontable(A), on(B, C), clear(B), —
handempty —

Operator: unstack(B, C)
Precondition: handempty, clear(B)
Add: holding(B), clear(C)

Delete: clear(B), on(B, C), handempty

??

Updated state: v
on(C, A), ontable(A), ...

Finding a Plan: Searching Forwards

Initial state:

on(C, A) ontable(A), on(B, C), clear(B), —
handempty -

Operator: unstack(B, C)
Precondition: handempty, clear(B)
Add: holding(B), clear(C)

Delete: clear(B), on(B, C), handempty

??

Updated state: v
on(C, A), ontable(A)

Finding a Plan: Searching Forwards

Initial state:

on(C, A) ontable(A), on(B, C), clear(B), —
handempty —

Operator: unstack(B, C)
Precondition: handempty, clear(B)
Add: holding(B), clear(C)

Delete: clear(B), on(B, C), handempty

27

Updated state: v
on(C, A), ontable(A), holding(B), clear(C)

Finding a Plan: Searching Forwards

Finding a Plan: Searching Forwards

Finding a Plan: Searching Forwards

v Pick up C and put
iton B?

Pick up C and put
it on the table?

Finding a Plan: Searching Backwards

Search backwards from goal to find a solution
Only looks at relevant actions!

Starting from the goal:
If initial state satisfies the current goal, done!

Choose an operator with an add list that matches
goals

Fail if no such operator, or if it has effects that contradict the
goals

Update current goals by subtracting add list, adding
preconditions

Fail if current goals are a subset of the new goals
Continue search with updated goals

Finding a Plan: Searching Backwards

Initial goal: B
on(B, A), ontable(C), handempty, <
clear(B) clear(C), ontable(A) A

Operator: stack(B, A)
Add list: on(B, A), clear(B), handempty

Del list: holding(B)
Precondition: holding(B), clear(A)

27

Updated goal:

ontable(C), clear(C), ontable(A)
holding(B), clear(A) T

Finding a Plan: Searching Backwards

Goal:

ontable(C), clear(C), ontable(A), holding(B),
clear(A)

Operator: pickup(B) T ??
Add list: holding(B)

Del list: handempty, clear(B), ontable(B)

Precondition: handempty, clear(B),
ontable(B)

Updated goal:

ontable(C), clear(C), ontable(A), handempty,
clear(B), ontable(B), clear(A) T

In-Class Exercise

A monkey is sitting at his desk, typing on his
typewriter. There is a box next to the window.
There are bananas hanging from the ceiling
above the printer, but the monkey needs the
box to reach them. The monkey’s goal is to sit
at his desk and eat a banana.

What is the initial state and goal state?

In-Class Exercise

A monkey is sitting at his desk, typing on his
typewriter. There is a box next to the window.
There are bananas hanging from the ceiling
above the printer, but the monkey needs the
box to reach them. The monkey’s goal is to sit
at his desk and eat a banana.

What is the initial state and goal state?

What are the operators?

In-Class Exercise

A monkey is sitting at his desk, typing on his
typewriter. There is a box next to the window.
There are bananas hanging from the ceiling
above the printer, but the monkey needs the
box to reach them. The monkey’s goal is to sit
at his desk and eat a banana.

What is the initial state and goal state?
What are the operators?

Run through the first few steps of forward and
backward search.

HTN PLANNING

An Alternate Approach

Hierarchical Task Network planning

Encoding domain-specific “recipes” for
achieving goals

Tasks instead of goals

Hierarchical decomposition of task networks

Into other tasks
Into primitive operators

Example: Building a House

Example: Building a House

Example: Building a House

Visit city hall, take a
number, wait to be called,
walk to desk, fill out
paperwork, ...

Example: Building a House

Walk to car
Drive car to city hall

Visit city hall, take a Park
number, wait to be called,

walk to desk, fill out

paperwork, ...

Example: Building a House

Walk to bus stop
Take 37 bus to Forest Hills
Visit city hall, take a Take Orange Line to South Station
number, wait to be called,
walk to desk, fill out
paperwork, ... These are the primitive operators!

Example: Building a House

Visit city hall, take a Find forger, meet forger in
number, wait to be called, alley, pay 5200, ...

walk to desk, fill out

paperwork, ...

Example: Building a House

Precondition: unscrupulous

Visit city hall, take a Find forger, meet forger in
number, wait to be called, alley, pay 5200, ...

walk to desk, fill out

paperwork, ...

Class Exercise

How can you express your morning routine as
an HTN?

Twists:
On Thursdays, you go to the gym

Your car is unreliable — some days it works, some
days it does not

You like to take a bath instead of shower if you
wake up before your alarm

You need caffeine in the morning, but sometimes
your roommate accidentally prepares decaf coffee

How do | decide which to use?

HTN: good for planning problems that have a
clear hierarchical decomposition

STRIPS: backward search good for exploratory
problems with no “recipes”

REACTIVE PLANNING

Executing Plans in a Changing World

Executing Plans in a Changing World

What do we do now?

As soon as world changes or conflict is found
where plan cannot execute, re-plan!

What do we do now?

Reactive planning!

Hierarchical task network where node
expansion occurs in real-time

Authoring problem: accounting for the
unexpected

SITUATED ACTIONS

