
CS 4100/5100

Foundations of AI

 constraint propagation, answer set programming

Announcements

 Assignment 1 due today

 Assignment 2 out tomorrow

 Project pitches due next week

 Office hours next week: Tuesday 10am - noon

PROJECT PITCHES

Next week: Pitch your final project!

 Teams of 2-3 students
 Exceptions: talk to me during break or end of class

 2 minute pitch, up to 2 minutes feedback

 Application of AI to your interest area

 What is the problem you want to solve, or the
question you want answered?

 What is your intended solution?

Potential Project Ideas

 Level generator for Super Mario World

 AI for controlling Pacman and Ghosts

 Evolutionary music or art generator

 Pattern recognition (faces? license plates?)

 Chat bot for tutoring math students

CONSTRAINT PROBLEMS

Scheduling

Scheduling

Chip Design

Puzzle Solving

Problem Formulation

 Variables

 What we are solving for

 Domains

 The values that variables can be

 Constraints

 Allowable combinations of values

Problem Formulation: Sudoku

 Variables

 ?

 Domains

 ?

 Constraints

 ?

A B C D E F G H I

1

2

3

4

5

6

7

8

9

Problem Formulation: Sudoku

 Variables

 All the grid squares

 Domains

 ?

 Constraints

 ?

A B C D E F G H I

1

2

3

4

5

6

7

8

9

Problem Formulation: Sudoku

 Variables

 All the grid squares

 Domains

 A1: [1, 2, 3, 4, 5, 6, 7,
8, 9]

 Constraints

 ?

A B C D E F G H I

1

2

3

4

5

6

7

8

9

Problem Formulation: Sudoku

 Variables

 All the grid squares

 Domains

 A1: [1, 2, 3, 4, 5, 6, 7,
8, 9]

 Constraints

 All different: [A1, B1,
C1, A2, B2, C2, A3, B3,
C3]……

A B C D E F G H I

1

2

3

4

5

6

7

8

9

Problem Formulation: Scheduling

 Variables

 ?

 Domains

 ?

 Constraints

 ?

Problem Formulation: Scheduling

 Variables

 Time slots, session lengths

 Domains

 ?

 Constraints

 ?

Problem Formulation: Scheduling

 Variables

 Time slots, session lengths

 Domains

 Time A: [calculus, AI, swim] …

 Constraints

 ?

Problem Formulation: Scheduling

 Variables

 Time slots, session lengths

 Domains

 Time A: [calculus, AI, swim] …

 Constraints

 Total time needed for a class

 No classes on Friday

 Co-requisite courses

Problem Formulation: Motherboard Design

 Variables

 ?

 Domains

 ?

 Constraints

 ?

Problem Formulation: Motherboard Design

 Variables

 Positions, dimensions, heat, power per component

 Domains

 ?

 Constraints

 ?

Problem Formulation: Motherboard Design

 Variables

 Positions, dimensions, heat, power per component

 Domains

 Position X: [0, 300] Y: [0, 200]

 Power: [0, 40] watts

 Constraints

 ?

Problem Formulation: Motherboard Design

 Variables

 Positions, dimensions, heat, power per component

 Domains

 Position X: [0, 300] Y: [0, 200]

 Power: [0, 40] watts

 Constraints

 No overlapping components

 Heat sensitivity of nearby components

Types of Domains

 Discrete vs. continuous

 Finite vs. infinite

Types of Constraints

 Unary: single variable

 Binary: two variables

 Global: many variables

 Preference: soft requirements

Types of Constraints

 Unary: single variable

 Binary: two variables

 Global: many variables

 Preference: soft requirements

CONSTRAINT PROPAGATION

What is Constraint Propagation?

 Search for solutions to variables that satisfy
constraints

 Rule out known-false candidates early

 Begin search intelligently

 Goal: find a complete and consistent solution

Example: Map Coloring

 Variables: WA, NT, Q, NSW, V, SA, T

 Domains: Di={red,green,blue}

 Constraints: adjacent regions must have different colors.
 E.g. WA NT

Example: Map Coloring

Backtracking Search

 Depth-first search

 Assign value to variable at each step

 Backtrack if conflict found

Backtracking Search

Backtracking Search

Backtracking Search

Improving Efficiency

 Depth-first search

 Assign value to variable at each step

 Backtrack if conflict found

Variable Selection

Minimum Remaining Values

Variable Selection

Highest degree

Value Selection

Least constraining value

So what’s the improvement?

 Plain backtracking: 25-queens problem

 Backtracking with heuristics: 1000-queens

Improving Efficiency

 Depth-first search

 Assign value to variable at each step

 Backtrack if conflict found

Binary Constraint Graphs

Forward Checking

 Maintain list of remaining legal values for
unassigned variables

 Conflict arises if there are no more values for any
variable

Forward Checking

 Maintain list of remaining legal values for
unassigned variables

 Conflict arises if there are no more values for any
variable

Forward Checking

 Maintain list of remaining legal values for
unassigned variables

 Conflict arises if there are no more values for any
variable

Forward Checking

 Maintain list of remaining legal values for
unassigned variables

 Conflict arises if there are no more values for any
variable

Forward Checking

 Maintain list of remaining legal values for
unassigned variables

 Conflict arises if there are no more values for any
variable

But…

 Could we have known to stop the search
earlier?

Arc Consistency

An arc (X, Y) in the graph is consistent if for
every value of a of X there exists a value b of Y

that is consistent with a.

Arc Consistency

 (SA, NSW) is consistent if:

 SA = blue, NSW = red

Arc Consistency

 (NSW, SA) is consistent if:

 NSW = red, SA = blue

 NSW = blue, SA =

Arc Consistency

 (V, NSW) is consistent if:

 V is not red

Arc Consistency

 (SA, NT) is not consistent

Arc Consistency: Tradeoffs

 Lots of overhead

 Need to re-add an edge to the queue if you
change its values elsewhere in the check

 Checking every edge on every step of search

 Vastly reduces search space

APPLICATION AREA:
PROCEDURAL CONTENT GENERATION

What is Procedural Content Generation?

The programmatic creation of content

that has a meaningful impact on gameplay

using algorithms that understand games and players.

Kinds of PCG Use

 Data compression

 Replayability

 Enabling exploration

A Mixed-Initiative Approach

Taking turns designing a
level with the computer

Human

Computer

su
gg

es
ts

 c
o

n
te

n
t

p
o

ses co
n

strain
ts

Tanagra

Tanagra Architecture

Working Memory

Reactive
Planner

Constraint
Solver

GUI

Geometry
Pattern Library

D
es

ig
n

er
 In

p
u

t U
p

d
ated

 Level U
p

d
at

ed
 L

ev
el

 B
eat Stru

ctu
re

Constraints

Solution

Constraint Solving with Choco

Working Memory

Reactive
Planner

Constraint
Solver

GUI

Geometry
Pattern Library

D
es

ig
n

er
 In

p
u

t U
p

d
ated

 Level U
p

d
at

ed
 L

ev
el

 B
eat Stru

ctu
re

Constraints

Solution

Constraints

g

g.height() == 0 g.width() != 0

g.width() == 0 g.height() != 0

Constraints

g.height() == 0 g.width() != 0

g.width() == 0 g.height() != 0

Constraints

g.height() == 0 g.width() != 0

g.width() == 0 g.height() != 0

Constraints

p1

p2

g

p2.startX() = p1.endX() + g.width()

p2.startY() = p1.endY() + g.height()

Finding a Solution

 Solve constraints
after placing all
geometry

 Choose geometry
intelligently based on
surroundings

 If no solution:

 Remove positioning
constraints and retry

 If no solution:
 Mark geometry

combination as
invalid and attempt a
different pattern

… …

Finding a Solution

 Solve constraints
after placing all
geometry

 Choose geometry
intelligently based on
surroundings

 If no solution:

 Remove positioning
constraints and retry

 If no solution:
 Mark geometry

combination as
invalid and attempt a
different pattern

… …

Finding a Solution

 Solve constraints
after placing all
geometry

 Choose geometry
intelligently based on
surroundings

 If no solution:

 Remove positioning
constraints and retry

 If no solution:
 Mark geometry

combination as
invalid and attempt a
different pattern

… …

Finding a Solution

 Solve constraints
after placing all
geometry

 Choose geometry
intelligently based on
surroundings

 If no solution:

 Remove positioning
constraints and retry

 If no solution:
 Mark geometry

combination as
invalid and attempt a
different pattern

… …

Finding a Solution

 Solve constraints
after placing all
geometry

 Choose geometry
intelligently based on
surroundings

 If no solution:

 Remove positioning
constraints and retry

 If no solution:
 Mark geometry

combination as
invalid and attempt a
different pattern

… …

Constraint Programming for PCG

 Declarative representation

 Algorithm-agnostic

 Adding and removing constraints to shape
generative space

ANSWER SET PROGRAMMING

