
CS 4100/5100

Foundations of AI

 constraint propagation, answer set programming

Announcements

 Assignment 1 due today

 Assignment 2 out tomorrow

 Project pitches due next week

 Office hours next week: Tuesday 10am - noon

PROJECT PITCHES

Next week: Pitch your final project!

 Teams of 2-3 students
 Exceptions: talk to me during break or end of class

 2 minute pitch, up to 2 minutes feedback

 Application of AI to your interest area

 What is the problem you want to solve, or the
question you want answered?

 What is your intended solution?

Potential Project Ideas

 Level generator for Super Mario World

 AI for controlling Pacman and Ghosts

 Evolutionary music or art generator

 Pattern recognition (faces? license plates?)

 Chat bot for tutoring math students

CONSTRAINT PROBLEMS

Scheduling

Scheduling

Chip Design

Puzzle Solving

Problem Formulation

 Variables

 What we are solving for

 Domains

 The values that variables can be

 Constraints

 Allowable combinations of values

Problem Formulation: Sudoku

 Variables

 ?

 Domains

 ?

 Constraints

 ?

A B C D E F G H I

1

2

3

4

5

6

7

8

9

Problem Formulation: Sudoku

 Variables

 All the grid squares

 Domains

 ?

 Constraints

 ?

A B C D E F G H I

1

2

3

4

5

6

7

8

9

Problem Formulation: Sudoku

 Variables

 All the grid squares

 Domains

 A1: [1, 2, 3, 4, 5, 6, 7,
8, 9]

 Constraints

 ?

A B C D E F G H I

1

2

3

4

5

6

7

8

9

Problem Formulation: Sudoku

 Variables

 All the grid squares

 Domains

 A1: [1, 2, 3, 4, 5, 6, 7,
8, 9]

 Constraints

 All different: [A1, B1,
C1, A2, B2, C2, A3, B3,
C3]……

A B C D E F G H I

1

2

3

4

5

6

7

8

9

Problem Formulation: Scheduling

 Variables

 ?

 Domains

 ?

 Constraints

 ?

Problem Formulation: Scheduling

 Variables

 Time slots, session lengths

 Domains

 ?

 Constraints

 ?

Problem Formulation: Scheduling

 Variables

 Time slots, session lengths

 Domains

 Time A: [calculus, AI, swim] …

 Constraints

 ?

Problem Formulation: Scheduling

 Variables

 Time slots, session lengths

 Domains

 Time A: [calculus, AI, swim] …

 Constraints

 Total time needed for a class

 No classes on Friday

 Co-requisite courses

Problem Formulation: Motherboard Design

 Variables

 ?

 Domains

 ?

 Constraints

 ?

Problem Formulation: Motherboard Design

 Variables

 Positions, dimensions, heat, power per component

 Domains

 ?

 Constraints

 ?

Problem Formulation: Motherboard Design

 Variables

 Positions, dimensions, heat, power per component

 Domains

 Position X: [0, 300] Y: [0, 200]

 Power: [0, 40] watts

 Constraints

 ?

Problem Formulation: Motherboard Design

 Variables

 Positions, dimensions, heat, power per component

 Domains

 Position X: [0, 300] Y: [0, 200]

 Power: [0, 40] watts

 Constraints

 No overlapping components

 Heat sensitivity of nearby components

Types of Domains

 Discrete vs. continuous

 Finite vs. infinite

Types of Constraints

 Unary: single variable

 Binary: two variables

 Global: many variables

 Preference: soft requirements

Types of Constraints

 Unary: single variable

 Binary: two variables

 Global: many variables

 Preference: soft requirements

CONSTRAINT PROPAGATION

What is Constraint Propagation?

 Search for solutions to variables that satisfy
constraints

 Rule out known-false candidates early

 Begin search intelligently

 Goal: find a complete and consistent solution

Example: Map Coloring

 Variables: WA, NT, Q, NSW, V, SA, T

 Domains: Di={red,green,blue}

 Constraints: adjacent regions must have different colors.
 E.g. WA  NT

Example: Map Coloring

Backtracking Search

 Depth-first search

 Assign value to variable at each step

 Backtrack if conflict found

Backtracking Search

Backtracking Search

Backtracking Search

Improving Efficiency

 Depth-first search

 Assign value to variable at each step

 Backtrack if conflict found

Variable Selection

Minimum Remaining Values

Variable Selection

Highest degree

Value Selection

Least constraining value

So what’s the improvement?

 Plain backtracking: 25-queens problem

 Backtracking with heuristics: 1000-queens

Improving Efficiency

 Depth-first search

 Assign value to variable at each step

 Backtrack if conflict found

Binary Constraint Graphs

Forward Checking

 Maintain list of remaining legal values for
unassigned variables

 Conflict arises if there are no more values for any
variable

Forward Checking

 Maintain list of remaining legal values for
unassigned variables

 Conflict arises if there are no more values for any
variable

Forward Checking

 Maintain list of remaining legal values for
unassigned variables

 Conflict arises if there are no more values for any
variable

Forward Checking

 Maintain list of remaining legal values for
unassigned variables

 Conflict arises if there are no more values for any
variable

Forward Checking

 Maintain list of remaining legal values for
unassigned variables

 Conflict arises if there are no more values for any
variable

But…

 Could we have known to stop the search
earlier?

Arc Consistency

An arc (X, Y) in the graph is consistent if for
every value of a of X there exists a value b of Y

that is consistent with a.

Arc Consistency

 (SA, NSW) is consistent if:

 SA = blue, NSW = red

Arc Consistency

 (NSW, SA) is consistent if:

 NSW = red, SA = blue

 NSW = blue, SA = 

Arc Consistency

 (V, NSW) is consistent if:

 V is not red

Arc Consistency

 (SA, NT) is not consistent

Arc Consistency: Tradeoffs

 Lots of overhead

 Need to re-add an edge to the queue if you
change its values elsewhere in the check

 Checking every edge on every step of search

 Vastly reduces search space

APPLICATION AREA:
PROCEDURAL CONTENT GENERATION

What is Procedural Content Generation?

The programmatic creation of content

that has a meaningful impact on gameplay

using algorithms that understand games and players.

Kinds of PCG Use

 Data compression

 Replayability

 Enabling exploration

A Mixed-Initiative Approach

Taking turns designing a
level with the computer

Human

Computer

su
gg

es
ts

 c
o

n
te

n
t

p
o

ses co
n

strain
ts

Tanagra

Tanagra Architecture

Working Memory

Reactive
Planner

Constraint
Solver

GUI

Geometry
Pattern Library

D
es

ig
n

er
 In

p
u

t U
p

d
ated

 Level U
p

d
at

ed
 L

ev
el

 B
eat Stru

ctu
re

Constraints

Solution

Constraint Solving with Choco

Working Memory

Reactive
Planner

Constraint
Solver

GUI

Geometry
Pattern Library

D
es

ig
n

er
 In

p
u

t U
p

d
ated

 Level U
p

d
at

ed
 L

ev
el

 B
eat Stru

ctu
re

Constraints

Solution

Constraints

g

g.height() == 0  g.width() != 0

g.width() == 0  g.height() != 0

Constraints

g.height() == 0  g.width() != 0

g.width() == 0  g.height() != 0

Constraints

g.height() == 0  g.width() != 0

g.width() == 0  g.height() != 0

Constraints

p1

p2

g

p2.startX() = p1.endX() + g.width()

p2.startY() = p1.endY() + g.height()

Finding a Solution

 Solve constraints
after placing all
geometry

 Choose geometry
intelligently based on
surroundings

 If no solution:

 Remove positioning
constraints and retry

 If no solution:
 Mark geometry

combination as
invalid and attempt a
different pattern

… …

Finding a Solution

 Solve constraints
after placing all
geometry

 Choose geometry
intelligently based on
surroundings

 If no solution:

 Remove positioning
constraints and retry

 If no solution:
 Mark geometry

combination as
invalid and attempt a
different pattern

… …

Finding a Solution

 Solve constraints
after placing all
geometry

 Choose geometry
intelligently based on
surroundings

 If no solution:

 Remove positioning
constraints and retry

 If no solution:
 Mark geometry

combination as
invalid and attempt a
different pattern

… …

Finding a Solution

 Solve constraints
after placing all
geometry

 Choose geometry
intelligently based on
surroundings

 If no solution:

 Remove positioning
constraints and retry

 If no solution:
 Mark geometry

combination as
invalid and attempt a
different pattern

… …

Finding a Solution

 Solve constraints
after placing all
geometry

 Choose geometry
intelligently based on
surroundings

 If no solution:

 Remove positioning
constraints and retry

 If no solution:
 Mark geometry

combination as
invalid and attempt a
different pattern

… …

Constraint Programming for PCG

 Declarative representation

 Algorithm-agnostic

 Adding and removing constraints to shape
generative space

ANSWER SET PROGRAMMING

