Constraint Satisfaction

CS 4100/5100

constraint propagation, answer set programming Foundations of Al

Announcements

Assignment 1 due today

Assignment 2 out tomorrow

Project pitches due next week

Office hours next week: Tuesday 10am - noon

PROJECT PITCHES

Next week: Pitch your final project!

Teams of 2-3 students
Exceptions: talk to me during break or end of class

2 minute pitch, up to 2 minutes feedback
Application of Al to your interest area

What is the problem you want to solve, or the
guestion you want answered?

What is your intended solution?

Potential Project Ideas

Level generator for Super Mario World

Al for controlling Pacman and Ghosts
Evolutionary music or art generator
Pattern recognition (faces? license plates?)

Chat bot for tutoring math students

CONSTRAINT PROBLEMS

Scheduling

2011 Sunday, Apr 10 Monday, Apr 11 Tuesday, Apr 12 Wednesday, Apr 13 Thursday, Apr 14 Friday, Apr 15

Scheduling

Chip Design

Puzzle Solving

Problem Formulation

Variables

What we are solving for

Domains

The values that variables can be

Constraints

Allowable combinations of values

Problem Formulation: Sudoku

Variables
?

Domains
?

Constraints
?

O 00 N OO U1 & W N B

A BCDEF GHI

Problem Formulation: Sudoku

Variables
All the grid squares

Domains
?

Constraints
?

O 00 N OO U1 & W N B

A BCDEF GHI

Problem Formulation: Sudoku

Variables
All the grid squares

Domains

Al:[1,2,3,4,5,6,7,
8, 9]

Constraints
?

O 00 N OO U1 & W N B

A BCDEF GHI

Problem Formulation: Sudoku

Variables
All the grid squares

Domains
Al:[1,2,63,4,5,6, 7,

8, 9]

Constraints

All different: [Al, B1,
C1, A2, B2, C2, A3, B3,

C3

O© 00 N o Ul o W N B

A BCDEF GHI

Problem Formulation: Scheduling

Variables
?

Domains - HE B
? =

Constraints
?

Problem Formulation: Scheduling

Variables

Time slots, session lengths

Domains - HE B
? =

Constraints
?

Problem Formulation: Scheduling

Variables

Time slots, session lengths

Domains

Time A: [calculus, Al, swim] ... —

Constraints
?

Problem Formulation: Scheduling

Variables

Time slots, session lengths

Domains

Time A: [calculus, Al, swim] ...

Constraints
Total time needed for a class
No classes on Friday
Co-requisite courses

Problem Formulation: Motherboard Design

Variables
?

Domains
?

Constraints
?

Problem Formulation: Motherboard Design

Variables

Positions, dimensions, heat, power per component

Domains
?

Constraints
?

Problem Formulation: Motherboard Design

Variables

Positions, dimensions, heat, power per component

Domains
Position X: [0, 300] Y: [0, 200]
Power: [0, 40] watts

Constraints
?

Problem Formulation: Motherboard Design

Variables

Positions, dimensions, heat, power per component

Domains
Position X: [0, 300] Y: [0, 200]
Power: [0, 40] watts

Constraints
No overlapping components
Heat sensitivity of nearby components

Types of Domains

Discrete vs. continuous

Finite vs. infinite

Types of Constraints

Unary: single variable

Binary: two variables

Global: many variables

Preference: soft requirements

Types of Constraints

Unary: single variable

Binary: two variables

Global: many variables

Preference: soft requirements

CONSTRAINT PROPAGATION

What is Constraint Propagation?

Search for solutions to variables that satisfy
constraints

Rule out known-false candidates early

Begin search intelligently

Goal: find a complete and consistent solution

Example: Map Coloring

Mot hern
Territory

Western Qusensland

Australia

South —_—

Australia

[New South Wales

Tasmania

Variables: WA, NT, Q, NSW, V, SA, T
Domains: D={red,green,blue}

Constraints: adjacent regions must have different colors.
E.g. WA =NT

Example: Map Coloring

£

-~

Backtracking Search

Depth-first search

Assign value to variable at each step

Backtrack if conflict found

Backtracking Search

‘/‘\-

SR

Backtracking Search

SO

/‘\~

SR

N\

. =

Backtracking Search

xS

‘/‘\-

ao S5R o

N

SR S

~

ol

Improving Efficiency

Depth-first search

Assign value to variable at each step

Backtrack if conflict found

Variable Selection

Minimum Remaining Values

SSEA SSma Spe oS

Variable Selection

Highest degree

SSES st Sl .

Value Selection

Least constraining value

\ |‘ Allows 1 value for SA

SSE S ‘H:<

\ | Allows 0 values for SA

So what’s the improvement?

Plain backtracking: 25-queens problem

Backtracking with heuristics: 1000-queens

Improving Efficiency

Depth-first search

Assign value to variable at each step

Backtrack if conflict found

Binary Constraint Graphs

Forward Checking

(vr)
v eR

I I 1y I e I I] ®‘°@
®©

Maintain list of remaining legal values for
unassigned variables

Conflict arises if there are no more values for any
variable

Forward Checking

S S O
e e w . O]

I IC I ICET IC Y ICETIreT Irew 1 @‘@

[I— | HiEFfEErE(mT | 1T 1 o
QO

Maintain list of remaining legal values for
unassigned variables

Conflict arises if there are no more values for any
variable

Forward Checking

SN S o~

WA Q NSW v SA T
CE I I I I 1 ire i
1 EETEECE[E] H[E I H]
—1] T 11 11

&

<

%

S
DO,
®

Maintain list of remaining legal values for

unassigned variables

Conflict arises if there are no more values for any
variable

Forward Checking

F— ek @
|lml|lml|l : IIINSWIII : IIISAIII ;] @‘!‘G@
(] FEErEErEErE] FE[EE] ‘
= e p

0,

Maintain list of remaining legal values for
unassigned variables

Conflict arises if there are no more values for any
variable

Forward Checking

A e S ey & &
|lml|lml|l : IIINSWIII : IIISAIII ;] @‘!‘G@
(] FEErEErEErE] FE[EE] ‘
= e p
0,

Maintain list of remaining legal values for
unassigned variables

Conflict arises if there are no more values for any
variable

S &Y @

e @S

CECICE 1T I ICE 1O :: @ @
LS e e DO,
O,

Could we have known to stop the search
earlier?

Arc Consistency

An arc (X, Y) in the graph is consistent if for
every value of a of X there exists a value b of Y
that is consistent with a.

Arc Consistency

Ho—¢-lo—eR (WD @
YL e LR
EEEm] E[ee=N EETE] EEEE @v@

\'-‘__é_.-""" o

@

(SA, NSW) is consistent if:
SA = blue, NSW = red

Arc Consistency

| H:ﬂ%ﬂ% @
) . el LK

—] Imiﬁ 5 @vo@
O

(NSW, SA) is consistent if:
NSW = red, SA = blue
NSW = blue, SA=®

Arc Consistency

B @
P - O
~— NG

(V, NSW) is consistent if:

V is not red

Arc Consistency

(SA, NT) is not consistent

Arc Consistency: Tradeoffs

Lots of overhead

Need to re-add an edge to the queue if you
change its values elsewhere in the check

Checking every edge on every step of search

Vastly reduces search space

APPLICATION AREA:
PROCEDURAL CONTENT GENERATION

What is Procedural Content Generation?

The programmatic creation of content
that has a meaningful impact on gameplay

using algorithms that understand games and players.

Kinds of PCG Use

Fr-q-‘:*‘t:‘. UiEL-'i‘--__ .

Data compression

Replayability

..........

Enabling exploration

A Mixed-Initiative Approach

Human

>

Taking turns designing a
level with the computer

S1UIBJ1SU0I Ssasod
suggests content

<€

Computer

Tanagra

GAMES AND PLAYABLE MEDIA

Gillian Smith, Jim Whitehead, Michael Mateas

Tanagra Architecture

Working Memory

A
5 C
o 3
< 2
3 @
o Q
oo ~
4 <
) @
\ 4

GUI

A
T o
> o
1 (e s
E 4
o c
@ S
3 c
- ™
\ 4 .
Constraints
Reactive
Planner <€ -
Solution

Geometry
Pattern Library

/

Constraint
Solver

Constraint Solving with Choco

Working Memory

N

Constraints

Solution

Constraint
Solver

g.height() == 0 -2 g.width() =0
g.width()==0 -2 g.height() !=0

g.height() == 0 2> g.width() =0
g.width()==0 -2 g.height() !=0

g.height() ==0 = g.width() !=0
g.width() ==0 -2 g.height() '=0

p2.startX() = pl.endX() + g.width()
p2.startY() = pl.endY() + g.height()

Finding a Solution

Solve constraints
after placing all
geometry

Choose geometry
intelligently based on
surroundings

If no solution:

Remove positioning
constraints and retry

If no solution:

Mark geometry
combination as
invalid and attempt a
different pattern

Finding a Solution

Solve constraints
after placing all
geometry

Choose geometry
intelligently based on
surroundings

If no solution:

Remove positioning
constraints and retry

If no solution:

Mark geometry
combination as
invalid and attempt a
different pattern

Finding a Solution

Solve constraints
after placing all
geometry

Choose geometry
intelligently based on
surroundings

If no solution:

Remove positioning
constraints and retry

If no solution:

Mark geometry
combination as
invalid and attempt a
different pattern

Finding a Solution

Solve constraints
after placing all
geometry

Choose geometry
intelligently based on
surroundings

If no solution:

Remove positioning
constraints and retry

If no solution:

Mark geometry
combination as
invalid and attempt a
different pattern

Finding a Solution

Solve constraints
after placing all
geometry

Choose geometry
intelligently based on
surroundings

If no solution:

Remove positioning
constraints and retry

If no solution:

Mark geometry
combination as
invalid and attempt a
different pattern

Constraint Programming for PCG

Declarative representation

Algorithm-agnostic

Adding and removing constraints to shape
generative space

ANSWER SET PROGRAMMING

