M

.
-

2
\ A =
\

Logic and Reasoning

CS 4100/5100

propositional logic, first-order logic

Foundations of Al

Announcements

Assignment 1 out
Due September 27t", 6pm

Piazza

Blackboard

Reading Responses

PROPOSITIONAL LOGIC

Knowledge-Based Agents

Understanding of the World

if it is raining then the ground is wet
if the sprinkler is on then the ground is wet
if the sprinkler is on then it isn’t raining

Knowledge-Based Agents

Understanding of the World

if it is raining then the ground is wet
if the sprinkler is on then the ground is wet
if the sprinkler is on then it isn’t raining

Percepts

the sprinkler is on

Knowledge-Based Agents

Understanding of the World

if it is raining then the ground is wet
if the sprinkler is on then the ground is wet
if the sprinkler is on then it isn’t raining

Percepts

the sprinkler is on

Updated Understanding of the World

it isn’t raining
the ground is wet

Propositional Logic

Understanding of the World

raining -> ground_wet
sprinkler -> ground_wet
sprinkler -> not raining

Propositional Logic

Understanding of the World

raining -> ground_wet
sprinkler -> ground_wet
sprinkler -> not raining

Percepts

sprinkler

Propositional Logic

Understanding of the World

raining -> ground_wet
sprinkler -> ground_wet
sprinkler -> not raining

Percepts

sprinkler

Updated Understanding of the World

not raining
ground_wet

Possible Worlds

raining -> sprinkler -> sprinkler ->

round_w ini
ground_wet ground_wet | ground_wet not raining

T T T T T -
T T F : F :
T - T T T T
T : F T F T
F T T T T T
F T F F T T
F F T T T T

Possible Worlds — Perceive Sprinkler

raining -> sprinkler -> sprinkler ->

round_w ini
ground_wet ground_wet | ground_wet not raining

T T T T T F
T T g F g F
T F T T T T

Possible Worlds

raining -> sprinkler -> sprinkler ->

round_w ini
ground_wet ground_wet | ground_wet not raining

T T T T T F
T T g F g F
T F T T T T

Possible Worlds — perceive ground wet

raining -> sprinkler -> sprinkler ->
ground_wet o
ground_wet | ground_wet not raining
T T T T T F

Theorem Proving with Logical Inference

Faster than model checking

Checking for entailed sentences through
proofs

Tautology

Sentences that are necessarily true

P v ~P

Sentences that must be true are valid

Deduction Theorem

A entails B iff the sentence A -> B is valid.

Satisfiability

A sentence X is satisfiable if there exists a model
such that X is true.

A sentence X is unsatisfiable if there exists no
model such that X is true.

Proof by Contradiction

KB entails A iff the sentence “A A KB is
unsatisfiable

Proof by Contradiction

Understanding of the World

if it is raining then the ground is wet
if the sprinkler is on then the ground is wet
if the sprinkler is on then it isn’t raining

Percepts

the sprinkler is on

Claim: the ground is not wet

Proof by Contradiction

Understanding of the World

if it is raining then the ground is wet
if the sprinkler is on then the ground is wet
if the sprinkler is on then it isn’t raining

Percepts

the sprinkler is on

Claim: the ground is not wet
Contradiction: if the sprinkler is on then the ground is wet

Proof by Contradiction

Understanding of the World

if it is raining then the ground is wet
if the sprinkler is on then the ground is wet
if the sprinkler is on then it isn’t raining

Percepts

the sprinkler is on

Claim: the ground is not wet
Contradiction: if the sprinkler is on then the ground is wet

Conclusion: the ground is wet
D

Logical Equivalence

Two sentences are logically equivalent iff true in same models:

a=f ifandonlyif af=pfand 8=«

(AN B) = (BAa) commutativity of A
(V@) = (BVa) commutativity of V
(aAB)AY) = (aAN(BA7)) associativity of A
(aVB)Vy) = (aV(BV7y)) associativity of V
—(ma) = a double-negation elimination
(@ = [B) = (-8 = —«) contraposition
(= B) = (-a VvV B) implication elimination
(@ & B) = ((a = B)A(B = «)) biconditional elimination
—(aAfB) = (—haV -8) de Morgan
(V) = (haAN—B3) de Morgan
(@A (BVY) = (aAB)V (xAv)) distributivity of A over V
(@V(BAY) = (aVB)A(aVy)) distributivity of V over A

if a->b and a is true, then b is true

KBO: raining -> ground_wet.

KB1: raining.

if a->b and a is true, then b is true

KBO: raining -> ground_wet.
KB1: raining.

Conclusion: ground_wet.

Modus Tollens

if a-> b is true and b is false, then a is false.

KBO: raining -> ground_wet.

KB1: not ground wet.

Modus Tollens

if a-> b is true and b is false, then a is false.

KBO: raining -> ground_wet.
KB1: not ground wet.

Conclusion: not raining.

And-Elimination

if a M bis true, then a is true and b is true

KB: sprinkler and warm.

Conclusion: sprinkler.

warm.

Back to Wumpus World

Environment
4x4 grid — agent starts at [1, 1]

I Squares adjacent to wumpus are smelly
. Squares adjacent to pit are breezy
3 - @gg Glitter iff gold is in the same square
- ,:% Shooting kills wumpus if you face it
| 5 = amma Shooting uses the only arrow
Grabbing picks up gold in the same square
, Eﬁ? Zommes| N |~ oo Climbing exits the cave if at [1,1]

Actions: Forward, TurnlLeft, TurnRight,
Grab, Shoot, Climb

Percepts: Stench, Breeze, Glitter,
Bump, Scream

1 2 3 4

Wumpus World: Proposition Symbols

World Representation:

s sess e
P 4 Skench > - P'T
X,Y
- e
W Ty [HEeme < e
ey < ¢¢¢5 T m——
3 e Seench > PIT
le 5 b | 2
T eSS -
.| esawe Cames

Agent Perception: o || g e
1 el PTG
SX’y ST.:RT : ; 4

B, ,

Wumpus Inference Example

~P1,1 %percept
B, <> (Pl’2 Y, P2,1) %rule
B, <> (Pl,l VP,V P3’1) %rule
"'31’1 %percept
lel %percept

Prove that there is no pitin [1,2].

Logical Equivalence

Two sentences are logically equivalent iff true in same models:

a=f ifandonlyif af=pfand 8=«

(AN B) = (BAa) commutativity of A
(V@) = (BVa) commutativity of V
(aAB)AY) = (aAN(BA7)) associativity of A
(aVB)Vy) = (aV(BV7y)) associativity of V
—(ma) = a double-negation elimination
(@ = [B) = (-8 = —«) contraposition
(= B) = (-a VvV B) implication elimination
(@ & B) = ((a = B)A(B = «)) biconditional elimination
—(aAfB) = (—haV -8) de Morgan
(V) = (haAN—B3) de Morgan
(@A (BVY) = (aAB)V (xAv)) distributivity of A over V
(@V(BAY) = (aVB)A(aVy)) distributivity of V over A

Resolution

Applies to two clauses in which there are
complementary literals

AvBvC
~“CvDVE

Resolution

Applies to two clauses in which there are
complementary literals

AvBvC
~“CvDVE

Resolution

Applies to two clauses in which there are
complementary literals

AvBvZ
~LvDVE

AvBvDVE

Proof by Resolution

PvQ
~“PvR

~“QVR

Prove R.

Resolution

Resolution on its own is enough for inferring
all sentences from a knowledge base.

..but it’s only good for disjunctive clauses

Resolution

Resolution on its own is enough for inferring
all sentences from a knowledge base.

..but it’s only good for conjunctions.

Every sentence can be converted to
conjunctive normal form.

Conjunctive Normal Form

A sentence expressed purely as a conjunction
of disjunctive clauses.

(AvBVC)A(DVEV~A)"(AvCvVE)

Logical Equivalence

Two sentences are logically equivalent iff true in same models:

a=f ifandonlyif af=pfand 8=«

(AN B) = (BAa) commutativity of A
(V@) = (BVa) commutativity of V
(aAB)AY) = (aAN(BA7)) associativity of A
(aVB)Vy) = (aV(BV7y)) associativity of V
—(ma) = a double-negation elimination
(@ = [B) = (-8 = —«) contraposition
(= B) = (-a VvV B) implication elimination
(@ & B) = ((a = B)A(B = «)) biconditional elimination
—(aAfB) = (—haV -8) de Morgan
(V) = (haAN—B3) de Morgan
(@A (BVY) = (aAB)V (xAv)) distributivity of A over V
(@V(BAY) = (aVB)A(aVy)) distributivity of V over A

Activity: Converting to CNF

PvQ->RA"S ?

B,, <> (P1,2 V Pz,1) ?

Activity: Unicorns

If the unicorn is mythical, then it is immortal.
But if the unicorn is not mythical, then it is a
mortal mammal. If the unicorn is either
immortal or a mammal then it is horned. The
unicorn is magical if it is horned.

Can you prove the unicorn is mythical?
Magical? Horned?

Horn Clauses: A Special Case

Horn clause: a clause with at most one
positive literal

~“Av~Bv~Cv~™D

Definite clause: a Horn clause with exactly one
positive literal

~Av~BvCv~D

Horn clauses are closed under resolution

(“AvBv~(C) (“Bv~Dv~EvVF)

~“Av~Cv~DV~EVF

Forward Chaining

Start with known facts and derive new
knowledge to add to the knowledge base

Agent can derive conclusions from incoming
percepts

Data-driven approach

Forward Chaining

Horn clauses:

Cl:~P,v~P,VvP, (P,"P,->P,)
C2:~P,v P, (P4 -> P5)
Facts:

P, P,

Forward Chaining

Horn clauses:

Cl:~P,v~P,VvP, (P,"P,->P,)

C2:~P,v P, (P4 -> P5)
Facts:

P, P,

Percepts P, and P, resolve with C1 to get P,

Forward Chaining

Horn clauses:

Cl:~P,v~P,VvP, (P,"P,->P,)

C2:~P,v P, (P4 -> P5)
Facts:

P, P,

Percepts P, and P, resolve with C1 to get P,
Resolve P, with C2 to get P,

Backward Chaining

Goal-driven reasoning

Work backwards to see if query is true

If inconclusive, query is false

Efficient: only touches relevant facts or rules

Backward Chaining

Horn clauses:

Cl:~P,v~P,vP, (P, AP, ->P,)
C2:~P, v P, (P4 ->Ps)
Facts:
P, P,
Goal: P,

Subgoal: prove P,

Backward Chaining

Horn clauses:

Cl:~P,v~P,vP, (P, ~P,->P,)
C2:~P,v P, (P4 ->Ps)
Facts:
P, P,
Goal: P,

Subgoal: prove P,
Sub-sub goal: prove P,
Sub-sub goal: prove P,

FIRST-ORDER LOGIC

More Flexibility

Objects

Relations

Functions (special kind of relation)

Some examples...

“Squares neighboring the wumpus are smelly.”
Objects: Wumpus, squares

Relations: Smelly (property), neighboring

Some examples...

“The father of Gillian is John.”
Objects: Gillian, John
Relations: father (also a function)

“John is an engineer.”
Objects: John
Relations: engineer (property)

Some examples...

“Foundations of Al is a fun class!”
Objects: ?
Relations: ?

“Boston is cold in the winter and warm in the
summer.”

Objects: ?

Relations: ?

Ontological Commitments

What is the nature of reality?

Objects with relationships that do not change with
time

Relationships are true or false (or no opinion)

Other kinds of languages
Temporal logic
Fuzzy logic
Higher order logic
Probability theory

First Order Logic - Syntax

Constants

john, gillian, mary
Predicates

president(america, obama)
Functions

father(gillian) = john
Variables

XY, /Z.
Connectives

ANy o>
Quantifiers

v, d

Converting English to First Order Logic

Stephen and Jeremy are friends.

Sarah is a computer scientist.

If a person is a computer scientist, then
Stephen is friends with them.

Converting English to First Order Logic

Stephen and Jeremy are friends.
friends(stephen, jeremy).

Sarah is a computer scientist.

If a person is a computer scientist, then
Stephen is friends with them.

Converting English to First Order Logic

Stephen and Jeremy are friends.
friends(stephen, jeremy).

Sarah is a computer scientist.

computerscientist(sarah).

If a person is a computer scientist, then
Stephen is friends with them.

Converting English to First Order Logic

Stephen and Jeremy are friends.
friends(stephen, jeremy).

Sarah is a computer scientist.

computerscientist(sarah).

If a person is a computer scientist, then
Stephen is friends with them.

computerscientist(X) -> friends(stephen, X)

Converting English to First Order Logic

The enemy of my enemy is my friend.

All dogs go to heaven.

There is a nice person in class.

Converting English to First Order Logic

The enemy of my enemy is my friend.
enemy(X, Y) » enemy(Y, Z) -> friend(X, Z)
All dogs go to heaven.

There is a nice person in class.

Converting English to First Order Logic

The enemy of my enemy is my friend.
enemy(X, Y) » enemy(Y, Z) -> friend(X, Z)

All dogs go to heaven.
v

There is a nice person in class.

Converting English to First Order Logic

The enemy of my enemy is my friend.
enemy(X, Y) » enemy(Y, Z) -> friend(X, Z)
All dogs go to heaven.
Vv

There is a nice person in class.
=

reasoning with first order logic

PROLOG

Logic programming language

Use cases:
Expert systems
Natural language processing

Backward chaining

Programming with Prolog

Facts
monster(zombie).
connected(hallway, kitchen).

sleepy(student).
likes(peanuts, elephant).

Rules
common_interest(X, Y) :- likes(Z, X), likes(Z, Y).

scary(X) :- monster(X).

Look through knowledge base for sentence
that matches the query, unify variables

Find the unifier (8) of unify(a, b)

a b 0
knows(john, X) knows(Y, elizabeth) X/elizabeth, Y/john
knows(X, Y) knows(sarah, Y) X/sarah, Y ungrounded
knows(john, X) knows(sarah, Y) fail

Derivation Trees

The law says that it is a crime for an American
to sell weapons to hostile nations. The country
Nono, an enemy of America, has some

missiles, and all of its missiles were sold to it
by Colonel West, an American.

Is Colonel West a criminal?

Derivation Trees

criminal(C)

american(C) weapon(W) sell (C, W, N) hostile(N)

Unification: {}

Goal: criminal(west).
Rule: criminal(C) :- american(C), weapon(W), sell(C, W, N), hostile(N).
D

Derivation Trees

criminal(west)

american(west) weapon(W) sell (west, W, N) hostile(N)

Unification: {C/west}

Goal: criminal(west).
Rule: criminal(C) :- american(C), weapon(W), sell(C, W, N), hostile(N).
D

Derivation Trees

criminal(west)

sell (west,

missile, N) ResHletbl)

american(west) weapon(missile)

Unification: {C/west, W/missile}

Goal: criminal(west).
Rule: criminal(C) :- american(C), weapon(W), sell(C, W, N), hostile(N).
D

Derivation Trees

criminal(west)

sell (west,

.. hostile(N)
missile, nono)

american(west) weapon(missile)

Unification: {C/west, W/missile, N/nono}

Goal: criminal(west).
Rule: criminal(C) :- american(C), weapon(W), sell(C, W, N), hostile(N).
D

Derivation Trees

criminal(west)

sell (west,

. hostile(nono)
missile, nono)

american(west) weapon(missile)

Unification: {C/west, W/missile, N/nono}

Goal: criminal(west).
Rule: criminal(C) :- american(C), weapon(W), sell(C, W, N), hostile(N).
D

More Prolog...

Arithmetic
Lists

There is a great tutorial linked in the
assignment!

Assignment 1

Make an adventure game in prolog

