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Module	Introduction

• So	far,	we've	written	our	functions	using	the	
observer	template	to	recur	on	the	sub-pieces	of	
the	data.		We	sometimes	call	this	structural	
recursion.

• In	this	module,	we'll	see	some	examples	of	
problems	that	don't	fit	neatly	into	this	pattern.

• We'll	introduce	a	new	family	of	strategies,	called	
general	recursion,	to	describe	these	examples.

• General	recursion	and	invariants	together	provide	
a	powerful	combination.
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Structural	Recursion

• Our	observer	templates	always	recurred	on	
the	sub-pieces	of	our	structure.

• This	is	sometimes	called	structural recursion.
• Let's	look	at	an	example	that	doesn't	fit	into	
this	mold.
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An	example:	decode

(define-struct diffexp (exp1 exp2))

;; A DiffExp is either
;; -- a Number
;; -- (make-diffexp DiffExp DiffExp)
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Here	is	the	data	definition	for	diffexps.		
These	are	a	simple	representation	of	
difference	expressions,	much	like	the	
arithmetic	expressions	we	considered	
in	some	of	the	earlier	problem	sets.



Examples	of	diffexps
(make-diffexp 3 5)
(make-diffexp 2 (make-diffexp 3 5))
(make-diffexp

(make-diffexp 2 4)
(make-diffexp 3 5))
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Writing	out	diff-exps is	tedious	at	best.



Not	very	human-friendly...

• How	about	using	more		Scheme-like	notation,		
eg:

(- 3 5)
(- 2 (- 3 5))
(- (- 2 4) (- 3 5))
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Task:	convert	from	human-friendly	
notation	to	diffexps.

• Info	analysis:
– what's		the	input?			
– answer:	S-expressions	containing	numbers	and	
symbols
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Data	Definitions
;; An Atom is one of
;; -- a Number
;; -- a Symbol

;; An SexpOfAtom is either
;; -- an Atom
;; -- a ListOfSexpOfAtom

;; A ListOfSexpOfAtom is either
;; -- empty
;; -- (cons SexpOfAtom ListOfSexpOfAtom)
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Here	is	a	formal	data	
definition	for	the	
inputs	to	our	
function.



Templates
(define (sexp-fn sexp)

(cond
[(atom? sexp) (... sexp)]
[else (... (los-fn sexp))]))

(define (los-fn los)
(cond

[(empty? los) ...]
[else (... (sexp-fn (first los))

(los-fn (rest los)))]))
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And	the	templates	
that	go	with	it.



Contract	and	Examples
decode : SexpOfAtom -> DiffExp

(- 3 5) => (make-diffexp 3 5)
(- 2 (- 3 5)) => (make-diffexp

2 
(make-diffexp 3 5))

(- (- 2 4) (- 3 5)) 
=> (make-diffexp

(make-diffexp 2 4)
(make-diffexp 3 5))
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Umm,	but	not	every	SexpOfAtom
corresponds	to	a	diffexp

(- 3)               does not correspond to any diffexp
(+ 3 5)             does not correspond to any diffexp
(- (+ 3 5) 5)       does not correspond to any diffexp
((1))               does not correspond to any diffexp
((- 2 3) (- 1 0))   does not correspond to any diffexp
(- 3 5 7)           does not correspond to any diffexp
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But	here	are	some	other	inputs	that	
are	legal	inputs	according	to	our	
contract.		None	of	these	is	the	
human-friendly	representation	of	
any	diff-exp.



A	Better	Contract
;; A MaybeX is one of
;; -- false
;; -- X

;; (define (maybex-fn mx)
;;   (cond
;;     [(false? mx) ...]
;;     [else (... mx)]))

decode 
: SexpOfAtom -> MaybeDiffExp

13

To	account	for	this,	we	
change	our	contract	to	
produce	a	MaybeDiffExp
instead	of	a	DiffExp.
If	the	SexpOfAtom
doesn't	correspond	to	any	
DiffExp,	we'll	have	our	
decode	function	return	
false.



Function	Definition	(1)
;; decode : SexpOfAtom -> MaybeDiffExp
;; STRATEGY: if the top level of sexp could be the top level of
;; a diffexp, recur on 2nd and 3rd elements. If either recursion
;; fails, return false.  If both recursions succeed, return the diffexp.
;; HALTING MEASURE: # of atoms in sexp

(define (decode sexp)
(cond
[(not (could-be-toplevel-of-diffexp? sexp)) false]
[(number? sexp) sexp]
[else
(local
((define operand1 (decode (second sexp)))
(define operand2 (decode (third sexp))))
(if (and (succeeded? operand1)

(succeeded? operand2))
(make-diffexp operand1 operand2)
false))]))
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Now	we	can	write	the	function	definition.		



Function	Definition	(2)
;; could-be-toplevel-of-diffexp? : SexpOfAtom -> Boolean
;; RETURNS: true iff the top level of the sexp could be the top 

level
;; of some diffexp.
;; STRATEGY: At the top level, a representation of a 
;; diffexp must be either a number or a list of
;; exactly 3 elements, beginning with the symbol -

(define (could-be-toplevel-of-diffexp? sexp)
(or (number? sexp)

(and
(list? sexp)
;; at this point we know that sexp is a list, so it is
;; safe to call list functions on it.
(= (length sexp) 3)
(equal? (first sexp) '-))))
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Function	Definition	(3)
;; succeeded? : MaybeX -> Boolean
;; RETURNS: Is the argument an X?
;; strategy: Use the template for MaybeX
(define (succeeded? mx)

(cond
[(false? mx) false]
[else true]))
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And	we	finish	with	the	help	
function	succeeded?	.



Something	new	happened	here

• We	recurred	on	subpieces.		
• Each	subpiece is	smaller	than	the	original
• BUT:
– we	didn't	use	the	predicates	from	the	template
– we	didn't	recur	on	all	of	the	subpieces

• So	this	is	not	structural	recursion	following	the	
template.

• It's	more	like	"divide-and-conquer"
• We	call	this	general	recursion.
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Divide-and-Conquer	
(General	Recursion)

• How	to	solve	the	problem:
– If	it's	easy,	solve	it	immediately
– If	it's	hard:
• Find	one	or	more	easier	problems	whose	solutions	will	
help	you	find	the	solution	to	the	original	problem.
• Solve	each	of	them
• Then	combine	the	solutions	to	get	the	solution	to	your	
original	problem
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"Easier"	means	"has	a	smaller	
halting	measure"



Let's	see	if	our	code	matches	this	
description

;; decode : SexpOfAtom -> MaybeDiffExp
;; STRATEGY: if the top level of sexp could be the top level of
;; a diffexp, recur on 2nd and 3rd elements. If either recursion
;; fails, return false.  If both recursions succeed, return the diffexp.
;; HALTING MEASURE: # of atoms in sexp

(define (decode sexp)
(cond
[(not (could-be-toplevel-of-diffexp? sexp)) false]
[(number? sexp) sexp]
[else
(local
((define operand1 (decode (second sexp)))
(define operand2 (decode (third sexp))))
(if (and (succeeded? operand1)

(succeeded? operand2))
(make-diffexp operand1 operand2)
false))]))
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Easy	Case	#1

Easy	Case	#2

Solve	the	
subproblems

Combine	the	
answers



Another	example:	merge-sort

• Let's	turn	to	a	different	example:		merge	sort,	
which	you	should	know	from	your	
undergraduate	data	structures	or	algorithms	
course.

• Divide	the	list	in	half,	sort	each	half,	and	then	
merge	two	sorted	lists.

• First	we	write	merge,	which	merges	two	
sorted	lists:
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merge
;; merge : SortedList SortedList -> SortedList
;; RETURNS: the sorted merge of its two arguments
;; strategy: recur on (rest lst1) or (rest lst2)
;; HALTING MEASURE: ???
(define (merge lst1 lst2)

(cond
[(empty? lst1) lst2]
[(empty? lst2) lst1]
[(< (first lst1) (first lst2))
(cons (first lst1) (merge (rest lst1) lst2))]

[else
(cons (first lst2) (merge lst1 (rest lst2)))]))
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If	the	lists	are	of	length	n,	this	function	
takes	time	proportional	to	n.		We	say	
that	the	time	is	O(n).



What's	the	halting	measure?
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;; merge : SortedList SortedList -> SortedList
;; merges its two arguments
;; strategy: recur on (rest lst1) or (rest lst2)
;; HALTING MEASURE: ???
(define (merge lst1 lst2)

(cond
[(empty? lst1) lst2]
[(empty? lst2) lst1]
[(< (first lst1) (first lst2))
(cons (first lst1) (merge (rest lst1) lst2))]

[else
(cons (first lst2) (merge lst1 (rest lst2)))]))

It	can't	be	(length	lst1),	because	
that	doesn't	decrease	at	the	

second	recursive	call	

It	can't	be	(length	lst2),	because	
that	doesn't	decrease	at	the	first	

recursive	call	

But	at	each	recursive	call,	one	of	the	lists	gets	shorter.		So	
(length	lst1)	+	(length	lst2)	decreases	at	both	calls.		

We	can	make	this	our	halting	measure.



Need	to	check	that	this	is	a	correct	
halting	measure

• We	need	to	make	a	mathematical	argument	that	the	
thing	we	claimed	was	a	halting	measure	is	in	fact	a	
halting	measure.		

• This	is	called	a	termination	argument.
• Here	we	mean	an	argument	in	the	sense	of	an	
argument	in	a	debate,	not	in	the	sense	of	an	argument	
to	a	function.		Don't	get	confused	by	this.

• We're	not	looking	for	a	formal	mathematical	proof,	but	
just	for	a	convincing	argument.

• We'll	see	some	examples	in	the	course	of	this	lesson.

23



Termination	Argument	for	merge

• Proposed	halting	measure:	
– (length lst1) + (length lst2)

• Termination	argument:
– (length lst1) and	(length lst2) are	both	
always	non-negative,	so	their	sum	is	non-negative.

– At	each	recursive	call,	either	lst1 or	lst2 becomes	
shorter,	so	either	way	the	sum	of	their	lengths	is	
shorter.

• So	(length lst1) + (length lst2) is	a	
halting	measure	for	merge.
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merge-sort
;; merge-sort : ListOfNumber -> SortedList
(define (merge-sort lon)
(cond
[(empty? lon) lon]
[(empty? (rest lon)) lon]
[else
(local
((define evens (even-elements lon))
(define odds  (odd-elements lon)))
(merge 
(merge-sort evens)
(merge-sort odds)))]))
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Now	we	can	write	merge-sort.		
merge-sort	takes	its	input	and	
divides	it	into	two	
approximately	equal-sized	
pieces.		

Depending	on	the	data	
structures	we	use,	this	can	be	
done	in	different	ways.		We	
are	using	lists,	so	the	easiest	
way	is	to	take	every	other	
element	of	the	list,	so	the	list	
(10	20	30	40	50) would	be	split	
into	(10	30	50)	and	(20	40)	.

We	sort	each	of	the	pieces,	
and	then	merge	the	sorted	
results.



Something	new	happened	here
• Merge-sort	did	something	very	different:	it	
recurred	on	two	things,	neither	of	which	is	(rest	
lon) .

• We	recurred	on	
– (even-elements lon)
– (odd-elements  lon)

• Neither	of	these	is	a	sublist of	lon .
• But	each	of	these	is	guaranteed	to	be	shorter	
than	lon.
– Really??	Let's	check	it...
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Termination	Argument	for	merge-
sort

• Proposed	halting	measure:		(length	lst)
• Termination	argument:

– (length lst) is	always		a	non-negative	integer.
– At	each	recursive	call,	(length lst) ≥	2
– If	(length lst) ≥	2,	then	

(length (even-elements lst)) and	
(length (odd-elements lst))

are	both	strictly	less	than	(length lst).
– (need	to	look	closely	at	the	code	for	even-elements and	

odd-elements to	check	this)
• So (length lst) is	a	halting	measure	for	merge-sort.
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Running	time	for	merge	sort
• Splitting	the	list	in	this	way	takes	time	proportional	to	
the	length	n	of	the	list.		The	call	to	merge	likewise	takes	
time	proportional	to	n.		We	say	this	time	is	O(n).

• If	T(n)	is	the	time	to	sort	a	list	of	length	n,	then	T(n)	is	
equal	to	the	time	2*T(n/2)	that	it	takes	to	sort	the	two	
sublists,	plus	the	time	O(n)	of	splitting	the	list	and	
merging	the	two	results:

• So	the	overall	time	is
T(n)	=	2*T(n/2)	+	O(n)

• When	you	take	algorithms,	you	will	learn	that	all	this	
implies	that	T(n)	=	O(n	log	n).		This	is	better	than	a	
selection	sort,	which	takes	O(𝒏𝟐).	
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The	General	Recursion	Strategy

• Strategy	for	divide-and-conquer	(general	
recursion)
– If	it's	easy,	solve	it	immediately
– If	it's	hard:

• Find	one	or	more	easier	problems	whose	solutions	will	help	
you	find	the	solution	to	the	original	problem.

• Solve	each	of	them
• Then	combine	the	solutions	to	get	the	solution	to	your	
original	problem

• Let's	write	this	down	as	a	recipe,	and	then	look	at	
some	of	the	possibilities.
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that	is,	smaller	in	
the	halting	
measure



The	General	Recursion	Recipe
Question Answer

1.	Are there	different	cases	of	your	
problem,	each	with	a	different	kind	of	
solution?

Write	a	cond with	a clause	for each case.

2.	How	do	the	cases	differ	from	each	
other?

Use	the	differences	to	formulate	a	
condition	per	case

3.	For	each	case: a. Identify	one	or	more	instances of	
your	problem	that	are	simpler	than	
the	original.

b. Document	why	they	are	simpler
c. Extract	each	instance	and	recur	to	

solve	it.
d. Combine	the	solutions	of	your	easier	

instances	to	get	a	solution	to	your	
original	problem.
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There's	more	than	one	pattern	for	the	
function	definition

• The	function	definition	might	take	different	
shapes,	depending	on	the	problem.	

• We	might	have	different	numbers	of	trivial	
cases,	or	different	numbers	of	subproblems.

• Let's	look	at	some	possibilities:	
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Patterns	for	General	Recursion	(1)
;; solve : Problem -> Solution
;; purpose statement...
;; TERMINATION ARGUMENT: explain why new-problem1 and new-

problem2 are easier than the-problem.
(define (solution the-problem)
(cond
[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)
(local
((define solution1 

(solve (simpler-instance1 the-problem)))
(define solution2
(solve (simpler-instance2 the-problem))))

(combine-solutions solution1 solution2))]))
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There	is	no	magic	recipe	for	finding	
smaller	subproblems.		You	must	
understand	the	structure	of	the	problem	
domain.

Instead	of	using	ellipses	("..."'s),	
we've	give	each	slot	a	name	
(displayed	in	orange)	so	you	can	
see	the	role	it	plays.



Patterns	for	General	Recursion	(2)
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Here's	a	version	with	two	trivial	
cases	and	one	difficult	case,	where	
the	difficult	case	involves	only	one	
subproblem.
Most	of	our	functions	involving	
lists	match	this	pattern.

;; solve : Problem -> Solution
;; STRATEGY: Recur on simpler-instance ARGUMENT: explain why 

new-problem1 and new-problem2 are easier than the-problem.
(define (solution the-problem)
(cond
[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)
(local
((define solution1 
(solve (simpler-instance the-problem))))        

(adapt-solution solution1))]))

simpler-instance : Problem -> Problem
adapt-solution : Solution -> Solution



;; solve : Problem -> Solution ARGUMENT: explain why new-
problem1 and new-problem2 are easier than the-problem.

(define (solution the-problem)
(cond
[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)     
(adapt-solution
(solve 
(simpler-instance the-problem)))]))

simpler-instance : Problem -> Problem
adapt-solution : Solution -> Solution

..or	you	could	do	it	without	the	local	
defines
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Here's	the	single-
subproblem pattern	we	
saw	a	couple	of	slides	
ago,	but	done	without	

the	local	defines



Patterns	for	General	Recursion	(3)
;; solve : Problem -> Solution
;; STRATEGY: Recur on (generate-subproblems the-problem), then use adapt-

solutions
TERMINATION ARGUMENT: explain why new-problem
(define (solution the-problem)

(cond
[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)
(local

((define new-problems 
(generate-subproblems the-problem)))        

(adapt-solutions
(map solve new-problems))]))

generate-subproblem : Problem -> ListOfProblem
adapt-solutions : ListOfSolution -> Solution
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Here's	a	version	where	
the	difficult	case	
requires	solving	a	
whole	list	of	
subproblems.		A	tree	
where	a	node	has	a	list	
of	sons	may	lead	to	
use	of	this	pattern.



You	could	do	this	one	without	the	local	
defines,	too.

;; solve : Problem -> Solution
TERMINATION ARGUMENT: explain why new-problem
(define (solution the-problem)
(cond
[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)              
(adapt-solutions
(map solve 
(generate-subproblems the-problem)))]))

generate-subproblem : Problem -> ListOfProblem
adapt-solutions : ListOfSolution -> Solution
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Here's	the	list-of-subproblems pattern	done	
without	using	local	define.



What	pattern	did	we	use	for	decode?

;; decode followed the very first pattern we wrote:

(define (solution the-problem)
(cond
[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)
(local
((define solution1 
(solve (simpler-instance1 the-problem)))
(define solution2
(solve (simpler-instance2 the-problem))))

(combine-solutions solution1 solution2))]))
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Writing		down	your	strategy
We’ll	write	down	our	strategies	as	things	like
STRATEGY: Recur on <value>

or
STRATEGY:	Recur	on	<value>;	halt	when		<condition>
or
STRATEGY: Recur on <values>; <describe how 
answers are combined>
These	are	just	patterns;	in	general,	a	strategy	is	a	tweet-sized	
description	of	how	the	function	works.		At	this	point	in	the	
course,	we'll	give	you	a	lot	of	freedom	in	doing	this.

38



Lesson	Summary

• We've	seen	three	examples	of	functions	that	
do	not	fit	the	structural	recursion	pattern.

• We	introduced	"general	recursion",	a	new	
class	of	templates	that	give	the	writer	more	
flexibility	in	writing	functions	that	divide	and	
conquer.

• We	wrote	a	recipe	for	writing	general-
recursion	templates.
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Next	Steps

• Study	the	files	08-1-decode.rkt	and	08-2-
merge-sort.rkt	in	the	Examples	folder.

• Do	Guided	Practice	8.1
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson
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