Foldr and Foldl

CS 5010 Program Design Paradigms
Lesson 7.5

@ © Mitchell Wand, 2012-2014
e 1 his work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Lesson Outline

Look more closely at foldr

Introduce foldl: like foldr but "in the other
direction”

Implement foldl using a context variable

Look at an application

Learning Objectives

e At the end of this lesson you should be able
to:

— explain what foldr and foldl compute
— explain the difference between foldr and foldl

— explain why they are called "fold right" and "fold
left"

— use foldl in a function definition

Foldr: the general picture

(x1 X2 X3 x4 x5)

(foldr f a (list x1 ... x5))

Another picture of foldr

The textbook says:

35 foldr @ (XY ->Y) Y ListOfX -> Y
55 (foldr f base (list x_ 1 ... x_n))
55 = (fx1 ... (f x_n base))

This may be clearer if we write the combiner in infix:
eg (x-y)instead of (fxy):

We use — instead of
+, because —is not

(foldr - d (1iSt x1l ... xn)) = associative. So it

X1 = (x2 = (... - (xn - a))) ;Eeecleence

associate
X1 —-—x2—-—x3-—x4

What if we wanted to associate the
other way?

Instead of |
foldr associates

X1 - (x2 - (... - (Xn — a))) ithseo:i)gerrjtorto
suppose we wanted

foldl will
(((a - Xl) - XZ) ceoe - Xn) associate its

operator to the
left

For this computation, the pipeline
goes the other way

(x1 X2 X3 X4 x5)

(foldl f a (list x1 ... x5))

Let's write the code

55 We'll use the template:
(define (foldl f a 1lst)
(cond
[(empty? 1st) ...]
[else (...
(first 1st)
(foldl ... (rest 1st)))])

N

We'll need to figure
out what goes here.

What if Ist is empty?

(x1 x2 x3 x4 x5)

N S B B

a {fHFHFHFHF]

 When the list is empty, there are no stages in
the pipeline, so
(foldl f a empty) = a

What if the list is non-empty?

(x1 x2 x3 x4 x5)

[

a {f{f{F{F{f]

(x2 x3 x4 x5)

Lo

(f x1 a) {FH{FHFHFL

So for a non-empty list

(foldl f a (cons x1 1st))
= (foldl f (f x1 a) 1st)

Putting this together

(define (foldl f a 1st)
(cond
[(empty? 1st) a]
[else (foldl f
(f (first 1lst) a)
(rest 1st))]))

Let's do a computation

(foldl - 1 (list 20 10 2))

(foldl - 19 (list 10 2)) ;20-1 = 19

(foldl - -9 (list 2)) ;10-19 = -9
(foldl - 11 empty) ;2-(-9) = 11

11

13

What's the contract?

(x1 X2 X3 X4 x5)

a o fF o Ff o F > Ff o Ff -

This part is like foldr: We can label all the
vertical arrows as X's and all the horizontal

arrows as Y's, so the contract becomes
(XY ->Y) Y ListOfX -> Y

14

Purpose Statement (1)

* Textbook description:

355 foldl ¢ (XY ->Y) Y ListOfX -> Y
55 (foldl f base (list x_1 ... x_n))
35 = (fxn ... (f x_1 base))

15

Can we describe this using an
invariant?

 To do this, let's think about where we are in the
middle of a computation

(((a - x1) - x2) x3 ... - Xn)

* At this point, we've processed x1 and x2, and we
are looking at the sublist (x3 ... Xxn)

16

Purpose Statement using invariant

GIVEN: a function f, a value a, and a sublist 1lst
WHERE: lst is a sublist of some larger list 1lsto
AND: a is the result of applying f to some starting
element a@ and the elements of 1lst@ that are above 1lst
RETURNS: the result of applying f to the starting element a@
and all the elements of 1lsto.

Here's an alternate purpose statement
that describes the situation in
the middle of the pipeline.

You don't have to use this purpose
statement; you can use the one from the
book if it is easier for you.

17

Let's apply this to subtraction

[
B2 |
[]
)
s
s
[)
)Js

o o
B2 |

)

3y

; diff : NonEmptyListOfNumber -> Number
; GIVEN: a nonempty list of numbers
; RETURNS: the result of subtracting the numbers, from

left to right.

; EXAMPLE:

(diff (list 10 5 3)) = 2

: We'll use the data definition
; NELON = (cons Number ListOfNumber)

This was guided practice

7.1

18

Code, with simple purpose statement

(define (diff nelst)
(diff-inner (first nelst) (rest nelst)))

33 diff-inner : Number ListOfNumber
55 RETURNS: the result of subtracting each of the numbers in lon
33 from num
(define (diff-inner num lon)
(cond
[(empty? lon) num]
[else (diff-inner
(- num (first lon)) ;5 this is (f a (first lon))
53 different order of arguments
;3 than foldl
(rest lon))]))

19

Code, with fancier purpose statement

(define (diff nelst) sofar is a good

(diff-inner (first nelst) (rest nelst) name for this
argument

;33 diff-inner : Number List
33 GIVEN: a number sofar and a sublist lon of some list lono
55 WHERE: sofar is the result of subtracting all the numbers in
;3 lon@ that are above lon.
55 RETURNS: the result of subtracting all the numbers in lone@.
(define (diff-inner sofar lon)
(cond
[(empty? lon) sofar]
[else (diff-inner
(- sofar (first lon)) ;; this is (f a (first lon))
;3 different order of arguments
;3 than foldl
(rest 1lon))]))

You could use either this purpose
statement or the one on the

preceding slide. Both are fine. bo

Or using foldl

(define (diff nelst)
(foldl
(lambda (x sofar) (- sofar x)) ;; foldl wants an X Y -> Y
(first nelst)
(rest nelst)))

sofar is a good name for this
argument, because it describes
where the value comes from.

21

Another application: Simulation

;3 Simulating a process

;53 Wishlist:
;3 hext-state : Move State -> State

;3 Simulate : State ListOfMove -> State
;5 given a starting state and a list of
;3 moves, find the final state

An Application: Simulation

;5 strategy: structural decomposition on moves
(define (simulate st moves)
(cond
[(empty? moves) st]
[else
(simulate
(next-state (first moves) st)
(rest moves)))]))

23

Or using foldl

(define (simulate initial-state moves)

(foldl
| carefully chose the order of the
next-state arguments to make this work. If
e \ next-state took its arguments in a
initial-state different order, you'd have to do the

same kind of thing we did for

moves)) subtraction above.

24

Summary

* You should now be able to:
— explain what foldr and foldl compute
— explain the difference between foldr and foldl

— explain why they are called "fold right" and "fold
left"

— use foldl in a function definition

25

Next Steps

* |f you have questions about this lesson, ask
them on the Discussion Board

e Do Problem Set 07

26

