
Case	Study:	Undefined	Variables

CS	5010	Program	Design	Paradigms
Lesson	7.4

1
©	Mitchell	Wand,	2012-2016
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Learning	Objectives
• At	the	end	of	this	lesson	the	student	should	be	able	to:
– explain	the	how	defined	and	undefined	variables	work	in	
our	GarterSnake minilanguage

– identify	the	undefined	variables	in	a	GarterSnake program
– construct	a	data	representation	for	a	program	in	
GarterSnake or	a	similar	language

– explain	an	algorithm	for	finding	undefined	variables	in	a	
GarterSnake program

– understand	how	the	algorithm	follows	the	structure	of	the	
data	representation

– write	similar	algorithms	for	manipulating	programs	in	
GarterSnake or	a	similar	simple	programming	language.

2

A	Tiny	Programming	Language:	
GarterSnake

• We	are	writing	a	compiler	for	a	tiny	language,	
called	GarterSnake.

• We	want	to	write	a	program	that	checks	a	
GarterSnake program	for	undefined	variables.

• Let's	describe	the	GarterSnake language:

3

The	GarterSnake programming	
language:	Programs

• A	Program	is	a	sequence	of	function	
definitions.	The	function	defined	in	each	
definition	is	available	for	use	in	all	of	the	
following	definitions.

4

Example:	A	GarterSnake program
def f1(x):f1(x)
; f1 is available in the body of f1
def f2 (x, y):f1(y)
; f1 is available in the body of f2
; spaces are ignored
def f3 (x,z): f1(f2(z,f1))
; f1 and f2 are available in the body of f3
; you can pass a function as an argument
def f4 (x, z):x(z,z)
; you can call an argument as a function

5

GarterSnake Definitions

• A	Definition	looks	like
def f(x1,..,xn):exp

• This	defines	a	function	named	f with	arguments	
x1,	x2,	etc.,	and	body	exp.	

• The	arguments	of	the	function	are	available	in	
the	body	of	the	function.		

• The	function	f itself	is	also	available	in	the	body	
of	the	function.		

• It	is	legal	for	a	function	to	take	no	arguments.

6

GarterSnake Expressions
• An	Expression	is	either	a	variable	v or	a	function	call	
f(e1,..,en)	.	

• v is	a	reference	to	the	variable	or	function	named	v .
• f(e1,e2,...)	is	an	application	of	f to	the	arguments	e1,	
e2,	etc.

• It	is	legal	for	a	function	to	be	applied	to	no	arguments.
• There	is	no	distinction	between	function	names	and	
argument	names:
– You	can	pass	a	function	as	an	argument,
– You	can	call	an	argument	as	a	function.
– You	can	return	a	function	as	the	value	of	a	function	call.

7

The	Problem:	Undefined	variables

An	occurrence	of	a	variable	is	undefined if	it	is	in	
a	place	where	the	variable	is	not	available.	
Examples:

def f7(x): f2(x)
; f2 is undefined in the body of f7
def f2(x,y): f3(y,x)
; f3 is undefined in the body of f2
def f3(x,z):f7(f2(z,y),z)
; y is undefined in the body of f3

8

I	purposely	called	this	f7 to	demonstrate	
that	the	names	of	the	variables	don't	

matter;	it's	just	their	position

The	Requirements
Given a GarterSnake program p,
determine whether there are any
undefined variables in p.

;; program-all-defined?
;; : Program -> Bool
;; GIVEN: A GarterSnake program p
;; RETURNS: true iff every variable
;; occurring in p is available at the
;; place it occurs.

9

Data	Definitions

• We	want	to	represent	only	as	much	
information	as	we	need	to	do	the	task.

• So	we	don’t	need	to	worry	about	spaces,	
details	of	syntax,	etc.

• We	just	need	to	represent	the	structure	of	the	
programs.

• All	the	clues	are	already	in	the	definitions

10

Data	Definitions:	Programs

• We	said:	A	Program	is	a	sequence	of	function	
definitions.

• So	we	write	a	corresponding	data	definition:

;; A Program is a ListOfDefinition

11

• We	wrote:	A	Definition	looks	like
def f(x1,..,xn):exp

• So	we	write	a	data	definition:

Data	Definition:	Definitions

12

(define-struct def (name args body))
;; A Definition is a (make-def Variable ListOfVariable Exp)
;; INTERPRETATION:
;; name is the name of the function being defined
;; args is the list of arguments of the function
;; body is the body of the function.

Data	Definition:	Expressions

• We	wrote:	an	Expression	is	either	a	variable	v
or	a	function	call	f(e1,..,en) .

• So	we	write	a	data	definition

13

(define-struct varexp (name))
(define-struct appexp (fn args))

;; An Exp is one of
;; -- (make-varexp Variable)
;; -- (make-appexp Variable ListOfExp)
;; INTERPRETATION;
;; (make-varexp v) represents a use of the variable v
;; (make-appexp f (list e1 ... en))
;; represents a call to the function named f
;; with arguments e1,..,en

Data	Definition:	Variables

• We	never	said	anything	about	what	is	or	isn’t	
a	legal	variable	name.		Based	on	the	examples,	
we’ll	choose	to	represent	them	as	Racket	
symbols.

• We	could	have	made	other	choices.
• Data	Definition:

14

;; A Variable is a Symbol

Global	View	of	the	GarterSnake
representation

15

Variable Application

ExpressionListOfVariableVariable

Definition

ListOfDefinition

Program

ListOfExpressionVariable

A	ListOfDefinitions may	contain	
a	Definition	and	a	
ListofDefinitions

A	ListOfExpression may	
contain	a	Expression	
and	a	ListofExpressions

means	“contains”	or	“may	contain”

Observer	Templates
;; pgm-fn : Program -> ??
#;
(define (pgm-fn p)
(lodef-fn p))

;; def-fn : Definition -> ??
#;
(define (def-fn d)
(... (def-name d) (def-args d) (def-body d)))

;; exp-fn : Exp -> ??
#;
(define (exp-fn e)
(cond
[(varexp? e) (... (varexp-name e))]
[(appexp? e) (... (appexp-fn e) (loexp-fn (appexp-args e)))]))

;; We omit the ListOf-* templates because they are standard and you should know
;; them by heart already.

16

In	Racket,	#;	marks	the	next	S-
expression	as	a	comment.		So	this	
definition	is	actually	a	comment.		

This	is	handy	for	templates.

Sidebar:	Data	Design	in	Racket

• We’ve	chosen	to	represent	GarterSnake
programs	as	recursive	structures.	

• This	is	sometimes	called	“abstract	syntax”	
because	it	abstracts	away	all	the	syntactic	
details	of	the	programs	we	are	manipulating.

• Recursive	structures	are	our	first-choice	
representation	for	information	in	Racket.

• You	will	almost	never	go	wrong	choosing	that	
representation.

17

Sidebar:	Symbols	and	Quotation

• Our	data	design	uses	symbols.
• A	Symbol	is	a	primitive	data	type	in	Racket.
• It		looks	like	a	variable.
• To	introduce	a	symbol	in	a	piece	of	code,	we	
precede	it	with	a	quote	mark.		For	example,	'z
is	a	Racket	expression	whose	value	is	the	
symbol	z.

18

Sidebar:	Quotation	(2)
• You	can	also	use	a	quote	in	front	of	a	list.		Quotation	tells	Racket	

that	the	thing	that	follows	it	is	a	constant	whose	value	is	a	symbol	
or	a	list.		Thus

• Thus	‘(a	b	c)	and	(list	‘a	‘b	‘c)	are	both	Racket		expressions	that	
denote	a	list	whose	elements	are	the	symbols	a,	b,	and	c.

• On	the	other	hand,	(a	b	c)	is	a	Racket	expression	that	denotes	the	
application	of	the	function	named	a to	the	values	of	the	variables	b
and	c.

• This	is	all	you	need	to	know	about	symbols	and	quotation	for	right	
now.

• There	is	lots	more	detail	in	HtDP/2e,		in	the	Intermezzo	entitled	
“Quote,	Unquote”.		But	that	chapter	covers	way	more	than	you	
need	for	this	course.

19

Data	Design:	Example
EXAMPLE:
def f1(x):f1(x)
def f2(x,y):f1(y)
def f3(x,y,z):f1(f2(z,y),z)
is represented by
(list

(make-def 'f1 (list 'x)
(make-appexp 'f1 (list (make-varexp 'x))))

(make-def 'f2 (list 'x 'y) (make-appexp 'f1 (list (make-varexp 'y))))
(make-def 'f3 (list 'x 'y 'z)

(make-appexp 'f1 (list (make-appexp 'f2
(list (make-varexp 'z)

(make-varexp 'y)))
(make-varexp 'z)))))))

20

Now	that	we’ve	briefly	explained	about	
symbols	and	quotation,	we	can	give	an	
example	of	the	representation	of	a	

GarterSnake program

System	Design	(1)
;; We'll need to recur on the list structure of programs. When we
;; analyze a definition, what information do we need to carry forward?
;; Let's look at an example. We'll annotate each definition with a
;; list of the variables available in its body.

#|
def f1(x):f1(x) ; f1 and x are available in the body.
def f2(u,y):f1(y) ; f1, f2, u, and y, are available in the body.
def f3(x,z):f1(f2(z,f1)) ; f1, f2, f3, x, and z are available in the body.
def f4(x,z):x(z,z) ; f1, f2, f3, f4, x, and z are available in the
body.
|#

;; In each case, the variables available in the body are the names of
;; the functions defined _before_ the current function, plus the names
;; of the current function and its arguments.

21

System	Design	(2)
;; Let's look at the "middle" of the calculation.
;; When we analyze the definition of f3, we need to know that f1 and
;; f2 are defined. When we analyze the body of f3, we need to know
;; that f1, f2, x, and z are defined.

;; So we generalize our functions to take a second argument, which is
;; the set of defined variables.

;; We'll have a family of functions that follow the data definitions;

;; program-all-defined : Program -> Boolean
;; lod-all-defined? : ListOfDefinition SetOfVariable -> Boolean
;; def-all-defined? : Definition SetOfVariable -> Boolean
;; exp-all-defined? : Exp SetOfVariable -> Boolean

22

lod-all-defined?
;; lod-all-defined? : ListOfDefinition SetOfVariable -> Boolean
;; GIVEN: a list of definitions 'defs' from some program p and a set of
;; variables 'vars'
;; WHERE: vars is the set of variables available at the start of defs in
;; p.
;; RETURNS: true iff there are no undefined variables in defs.
;; EXAMPLES: See examples above (slide 8)
;; STRATEGY: Use template for ListOfDefinition on defs. The names
;; available in (rest defs) are those in vars, plus the variable
;; defined in (first defs).

(define (lod-all-defined? defs vars)
(cond
[(null? defs) true]
[else
(and
(def-all-defined? (first defs) vars)
(lod-all-defined? (rest defs)

(set-cons (def-name (first defs))
vars)))]))

23

You	can’t	tell	if	a	
variable	is	
undefined	unless	
you	know	
something	about	
the	program	it	
occurs	in!		The	
WHERE	invariant	
captures	this	
information.

Don’t	say	“see	examples	above”	or	“see	tests	below”	
unless	there	really	are	such	examples	or	tests.

def-all-defined?
;; def-all-defined? : Definition SetOfVariable -> Boolean
;; GIVEN: A definition 'def' from some program p and a set of
;; variables 'vars'
;; WHERE: vars is the set of variables available at the start of def in
;; p.
;; RETURNS: true if there are no undefined variables in the body of
;; def. The available variables in the body are the ones in def, plus
;; the name and arguments of the definition.
;; EXAMPLES: See examples above (slide 8)
;; STRATEGY: Use template for Definition on def

(define (def-all-defined? def vars)
(exp-all-defined? (def-body def)

(set-cons
(def-name def)
(set-union (def-args def) vars))))

24

exp-all-defined?
;; exp-all-defined? : Exp SetOfVariable -> Boolean
;; GIVEN: A GarterSnake expression e, occurring in some program
;; p, and a set of variables vars
;; WHERE: vars is the set of variables that are available at the
;; occurrence of e in p
;; RETURNS: true iff all the variable in e are defined
;; STRATEGY: Use template for Exp on e

(define (exp-all-defined? e vars)
(cond
[(varexp? e) (my-member? (varexp-name e) vars)]
[(appexp? e)
(and (my-member? (appexp-fn e) vars)

(andmap
(lambda (e1) (exp-all-defined? e1 vars))
(appexp-args e)))]))

25

program-all-defined?
;; And finally, we can write program-all-defined?, which
;; initializes the invariant information for the other
;; functions.

;; program-all-defined? : Program -> Bool
;; GIVEN: A GarterSnake program p
;; RETURNS: true iff there every variable occurring in p
;; is defined at the place it occurs.
;; STRATEGY: Initialize the invariant of lod-all-defined?

(define (program-all-defined? p)
(lod-all-defined? p empty))

26

It	would	be	ok	to	write	“call	a	
more	general	function”	here,	but	
this	is	more	informative.

Call	Graph	for	this	Program

27

We	used	an	andmap
instead	of	defining	
listofexp-all-
defined?

variable	case application	
case

exp-all-
defined?ListOfVariableVariable

def-all-defined

lod-all-defined?

program-all-
defined?

andmap exp-all-defined?
on	arguments

is	function	
name	defined?

means	“calls”	or	“may	call”

See	how	the	call	graph	follows	the	
structure	of	the	data!

28

Variable Application

ExpressionListOfVariableVariable

Definition

ListOfDefinition

Program

ListOfExpressionVariable

A	ListOfDefinitions may	contain	
a	Definition	and	a	
ListofDefinitions

A	ListOfExpression may	
contain	a	Expression	
and	a	ListofExpressions

means	“contains”	or	“may	contain”

Summary
• You	should	now	be	able	to:
– explain	how	defined	and	undefined	variables	work	in	our	
GarterSnake minilanguage

– identify	the	undefined	variables	in	a	GarterSnake program
– construct	a	data	representation	for	a	program	in	
GarterSnake or	a	similar	language

– explain	an	algorithm	for	finding	undefined	variables	in	a	
GarterSnake program

– understand	how	the	algorithm	follows	the	structure	of	the	
data	representation

– write	similar	algorithms	for	manipulating	programs	
GarterSnake or	a	similar	simple	programming	language.

29

Next	Steps

• Study	Examples/07-3-gartersnake.rkt
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practices	7.2	and	7.3
• Go	on	to	the	next	lesson

30

