
When	do	I	need	an	invariant?

CS	5010	Program	Design	Paradigms
Lesson	7.3

1
©	Mitchell	Wand,	2012-2016
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Learning	Objectives

• At	the	end	of	this	lesson,	the	student	should	
be	able	to
– decide	whether	a	purpose	statement	needs	an	
invariant	or	not.

2

When	do	I	need	an	invariant?

• It	all	depends	on	the	purpose	statement.
• If	your	code	fulfills	the	purpose	statement	for	
any	arguments	of	the	types	listed	in	the	
contract,	you	don't	need	an	invariant.

• If	the	function	fulfills	its	purpose	statement	
only	for	certain	values	or	combinations	of	
values	of	the	arguments,	then	you	must	
document	that	restriction	with	a	WHERE-
clause.

3

What	kind	of	things	belong	in	an	
invariant?

• If	the	function	needs	additional	information	
that	is	not	in	the	arguments,	then	you	need	an	
invariant	to	document	the	needed	information

• What	kind	of	information	might	you	want?
– context	information	(e.g.	we	are	position	n in	the	
list)

– other	knowledge	that	isn't	expressed	in	the	
contract	(e.g.	we've	figured	out	the	ball	isn't	going	
to	bounce).

4

Whose	responsibility	is	it?

• The	invariant,	along	with	the	contract,	sets	
down	the	assumptions	that	each	function	
makes	about	the	arguments	that	it	processes

• It	is	up	to	each	caller	of	the	function	to	make	
sure	that	the	invariant	is	true	at	every	call.

• The	function	gets	to	assume	that	the	invariant	
is	true.

5

;; ball-normal-motion : Ball -> Ball
;; GIVEN: a Ball
;; WHERE: the Ball is not going to
;; collide with a wall on this tick
;; RETURNS: the state of the ball after a
;; tick.
(define (ball-normal-motion b)
(make-ball
(+ (ball-x-pos b) BALLSPEED)))

Example:	

6

Doesn't	work	for	every	Ball!..		
Needs	more	information	

Invariant	provides	the	
necessary	information	

Example
;; number-list-from : ListOfX Number -> NumberedListOfX
;; RETURNS: a list with same elements as lst, but numbered
;; starting at n.
;; EXAMPLE: (number-list-from (list 88 77) 2)
;; = (list (list 2 88) (list 3 77))
;; STRATEGY: Use template for ListOfX on lst
(define (number-list-from lst n)
(cond
[(empty? lst) empty]
[else
(cons
(list n (first lst))
(number-list-from (rest lst) (+ n 1)))]))

7

Satisfies	its	purpose	
statement	for	any	lst and	n,	
so	no	invariant	necessary.	

Example:	Same	Code,	different	
purpose	statement

;; number-sublist :
;; ListOfX Number -> NumberedListOfX
;; GIVEN: a sublist slst of some list lst0
;; WHERE: slst is the n-th sublist of lst0
;; RETURNS: a copy of slst numbered according to its
;; position in lst0.
;; STRATEGY: Use template for ListOfX on slst
(define (number-sublist slst n)

(cond
[(empty? slst) empty]
[else

(cons
(list n (first slst))
(number-sublist (rest slst) (+ n 1)))]))

8

Function	can't	fulfill	its	
purpose	unless	it	knows	

where	slst is	in	lst0

Invariant	supplies	the	extra	
information

Wait,	weren't	those	functions	very	
similar?

• Yes.		In	fact	they	were	identical	(except	for	
their	names).

• The	moral	of	the	story	is	that	it	is	the	purpose	
statement	that	determines	whether	you	need	
an	invariant.

9

Once	more:	When	do	I	need	an	
invariant?

• If	your	code	fulfills	the	purpose	statement	for	
any	arguments	of	the	types	listed	in	the	
contract,	you	don't	need	an	invariant.

• If	the	function	only	works	for	certain	values	or	
combinations	of	values	of	the	arguments,	then	
you	must	document	the	assumptions	that	it	
needs	with	a	WHERE-clause	(i.e.	an	invariant).

10

What	needs	to	be	in	my	purpose	
statement?

• The	purpose	statement	must	account	for	all	the	parameters.
– if	it	doesn't	then	either	you	are	passing	more	parameters	than	you	

need,	or	there's	something	going	on	that	you	haven't	described.

• The	RETURNS	clause	must	describe	the	value	returned	by	the	
function	for	all	possible	values	of	the	parameters.

• If	the	RETURNS	clause	describes	the	value	returned	by	the	
function	only	for	some	values	of	the	arguments	or	some	
combination	of	arguments,	then	that	restriction	must	be	
stated	in	a	WHERE	clause.

• It	becomes	the	responsibility	of	the	caller	to	guarantee	that	
the	restriction	is	satisfied.

11

Another	example
;; add-remaining-length : LoN -> LoN
;; RETURNS: a list like the original, but with each
;; element increased by the length of the sublist
;; starting at that element.
;; (100 300 500) => (103 302 501)
;; Strategy: Use template for LoN on lst
(define (add-remaining-length lst)

(cond
[(empty? lst) empty]
[else (cons

(+ (first lst) (length lst))
(add-remaining-length

(rest lst)))]))

12

Yuck!	You	have	to	
recalculate	the	
length	of	list	every	
time	through	
(repeated	
computation	might	
be	slow!)

Let's	help	the	function	along	by	giving	
it	the	length	of	the	list	as	an	argument
;; add-remaining-length-1 : LoN Number-> LoN
;; GIVEN: a Lon lst and a number n
;; WHERE: n = (length lst)
;; RETURNS: a list like the original, but with each
;; element increased by the length of the sublist
;; starting at that element.
;; (100 300 500) 3 => (103 302 501)
;; Strategy: Use template for LoN on lst
(define (add-remaining-length-1 lst n)
(cond [(empty? lst) empty]

[else (cons
(+ (first lst) n)
(add-remaining-length-1 (rest lst)

(- n 1)))])) 13

Doesn't	give	the	
right	answer	unless	
invariant	is	satisfied	

Recapture	the	original	function	by	
initializing	the	invariant

;; add-remaining-length-version-2 : LoN -> LoN
;; GIVEN: a Lon lst
;; RETURNS: a list like the original,
;; but with each element increased by the
;; length of the sublist starting at that
;; element.
;; (100 300 500) => (103 302 501)
;; STRATEGY: Initialize the invariant
;; of add-remaining-length-1
(define (add-remaining-length-version-2 lst)
(add-remaining-length-1 lst (length lst)))

14

Summary:	When	do	I	need	an	
invariant?	

• It	all	depends	on	your	purpose	statement!
• If	the	function	needs	additional	information	to	
fulfill	its	stated	purpose,	and	that	information	
is	not	in	the	arguments,	then	you	need	an	
invariant	to	document	the	needed	
information.

• It	is	up	to	each	caller	of	the	function	to	make	
sure	that	the	invariant	is	true	at	every	call.

15

Summary

• The	student	should	now	be	able	to
– decide	whether	a	purpose	statement	needs	an	
invariant	or	not.

16

Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Look	at	07-3-invariants.rkt	in	the	Exam
• Go	on	to	the	next	lesson

17

