
Solving	Your	Problem	by	
Generalization

CS	5010	Program	Design	Paradigms
Lesson	7.1

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Module	Introduction

• Some	problems	are	not	easily	solved	by	simply	
using	a	template.

• We	show	how	to	solve	many	such	problems	by	
introducing	new	variables	called	context	
variables.

• We	introduce	invariants as	a	way	of	recording	
the	assumptions	that	a	function	makes	about	
its	context.

2

Module	Outline

• At	the	end	of	this	module,	you	should	be	able	
to
– use	generalization	within	a	problem	to	solve	the	
problem

– use	context	arguments	to	generalize	over	problem	
contexts

– write	invariants	to	document	the	meaning	of	a	
context	argument

– explain	how	invariants	divide	responsibility	
between	a	function	and	its	callers

3

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Design	
Strategies

Combine	simpler	
functions

Use	a	template

Divide	into	Cases

Call	a	more	
general	function

Communicate	
via	State

Module	07

4

Lesson	Introduction

• In	Module	5,	we	learned	about	generalizing	
functions	in	order	to	avoid	code	duplication	
and	establish	single	points	of	control.

• In	this	lesson,	we'll	extend	those	techniques	to	
situations	where	the	problem	itself	demands	
to	be	generalized	before	you	can	solve	it.

• Let's	look	at	an	example.

5

Example	1:	number-list
number-list : ListOfX -> NumberedListOfX
RETURNS: a list like the original, but with the

elements numbered consecutively, starting
from 1

(number-list (list 22 44 33))
= (list (list 1 22) (list 2 44) (list 3 33))

(number-list (list 44 33))
= (list (list 1 44) (list 2 33))

6

Here's	an	example	of	a	problem	
that's	hard	to	solve	using	our	
usual	template	for	lists.

Example	1:	number-list
A NumberedX is a (list Int X)
A NumberedListOfX is a ListOfNumberedX

Example:
(list 14 "abc") is a NumberedString
(list 36 "u") is a NumberedString
(list

(list 14 "abc")
(list 36 "u")
(list 14 "abc")) is a NumberedListofString

7

Here	are	the	
data	definitions	
for	this	problem	

Let's	try	using	the	template	for	ListOfX

(define (number-list lst)
(cond

[(empty? lst) empty]
[else (cons

(list 1 (first lst))
(number-list (rest lst)))]))

8

Well,	that's	clearly	wrong!		What	
could	work?

We	need	a	help	function,	to	number	the	rest	
of	the	list	starting	from	2

Try	#2
(define (number-list lst)

(cond
[(empty? lst) empty]
[else (cons

(list 1 (first lst))
(number-list-starting-from-2

(rest lst)))]))

9

Well,	this	looks	promising.		All	we	have	to	do	now	is	
write	number-list-starting-from-2

number-list-starting-from-2
(define (number-list-starting-from-2 lst)

(cond
[(empty? lst) empty]
[else (cons

(list 2 (first lst))
(number-list-starting-from-3

(rest lst)))]))

10

Oh,	dear.		Now	we	have	to	write	number-list-
starting-from-3

number-list-starting-from-3
(define (number-list-starting-from-3 lst)

(cond
[(empty? lst) empty]
[else (cons

(list 2 (first lst))
(number-list-starting-from-4

(rest lst)))]))

11

You	should	be	able	to	guess	where	this	is	going...

Let’s	generalize!

Add	an	extra	parameter	for	the	starting	point	of	
the	numbering.

;; number-list-from : ListOfX NonNegInt-> NumberedListOfX
;; RETURNS: a list with same elements as lst, but
;; numbered starting at n.
;; EXAMPLE: (number-list-from (list 88 77) 2)
;; = (list (list 2 88) (list 3 77))

12

Now	the	problem	is	easy
;; STRATEGY: Use template for ListOfX
;; on lst
(define (number-list-from lst n)

(cond
[(empty? lst) empty]
[else

(cons
(list n (first lst))
(number-list-from

(rest lst)
(+ n 1)))]))

13

And	we	can	recover	the	original

;; STRATEGY:
;; Call a more general function

(define (number-list lst)
(number-list-from lst 1))

14

Let’s	look	again	at	number-elements

• Let's	look	at	number-elements again,	in	a	
different	way	that	may	give	us	some	more	
insight.

15

Let’s	watch	this	work
(number-list (list 11 22 33))
= (number-list-from (list 11 22 33) 1)
= (cons (list 1 11)

(number-list-from (list 22 33) 2)
= (cons (list 1 11)

(cons (list 2 22)
(number-list-from (list 33) 3)))

= (cons (list 1 11)
(cons (list 2 22)

(cons (list 3 33)
(number-list-from empty 4)))

= (cons (list 1 11)
(cons (list 2 22)

(cons (list 3 33)
empty))) 16

Here's	an	example	of	
number-list in	action.		In	
each	call	of	number-list-
from,	I've	marked	the	
arguments	in	red.		What	
do	you	notice	about	the	
first	argument	of	each	
call?		What	do	you	notice	
about	the	second	
argument	of	each	call?		
What	is	the	relationship	
between	the	arguments	of	
each	call	and	the	original	
list,	(list	11	22	33) ?

What's	going	on	here?

• (number-list-from lst n) is	called	on	
the	n-th sublist of	the	original.

• So	n is	the	number	of	elements	in	the	original	
that	are	above	lst

• This	is	deep	knowledge	about	this	function,	
which	we	need	to	capture	and	document	if	we	
are	going	to	explain	this	code	to	anybody

17

We	document	this	as	an	invariant
;; number-list-from
;; : ListOfX NonNegInt-> NumberedListOfX
;; GIVEN: a sublist slst and an integer n
;; WHERE: slst is the n-th sublist
;; of some list lst0
;; RETURNS: <to be filled in>

18

We	don't	know	what	that	list	
lst0 was;	all	we	know	is	that	we	
are	looking	at	its	n-th sublist.		
We	document	this	knowledge	
by	writing	it	in	a	WHERE	clause.	

The	WHERE	clause	is	called	an	
“invariant”.		It	is	the	responsibility	of	
each	caller	of	this	function	to	make	
sure	that	the	WHERE	clause	is	
satisfied.

The	function	itself	can	assume	that	
the	WHERE	clause	is	true,	just	as	it	
assumes	that	its	arguments	satisfy	
its	contract.

Now	let’s	write	the	rest	of	the	purpose	
statement

• The	function	has	lost	track	of	the	original	list;	
it	only	knows	its	position	in	the	original.

• Need	to	document	the	connection	in	the	
purpose	statement.

• Here's	the	new	purpose	statement:

19

New	Purpose	Statement
;; number-list-from
;; : ListOfX NonNegInt -> NumberedListOfX
;; GIVEN: a sublist slst and an integer n
;; WHERE: slst is the n-th sublist of some list lst0
;; RETURNS: a copy of slst numbered according to its
;; position in lst0.
;; strategy: Use template for ListOfX on slst

20

First,	we	document	that	we	are	
looking	at	a	sublist of	some	list

We	don't	know	what	that	list	
was;	all	we	know	is	that	we	are	
looking	at	its	n-th sublist.		We	
document	this	knowledge	by	
writing	it	in	a	WHERE	clause.	

This	is	called	the	
accumulator	
invariant

The	extra	argument	n	
keeps	track	of	the	
context:		where	we	
are	in	lst0

Structural	Arguments	and	Context	
Arguments

• In	this	example,	slst is	a	structural	argument:	it	is	
the	argument	that	we	are	doing	structural	
decomposition	on.

• n is	a	context	argument:	it	tells	us	something	
about	the	context	in	which	we	are	working.		It	
generally	changes	at	each	recursive	call,	because	
the	recursive	call	is	solving	the	problem	in	a	new	
or	bigger	context.

• The	WHERE clause	tells	us	how	to	interpret the	
context	argument	as	a	context.

21

Is	the	invariant	satisfied	at	the	
recursive	call?

(define (number-list-from lst n)
(cond
[(empty? lst) empty]
[else
(cons
(list n (first lst))
(number-list-from (rest lst) (+ n 1)))]))

22

FACT:
if
lst is	the	nth	sublist of	the	original,	
then
(rest	lst)	is	its	(n+1)-st sublist.			

So,	if	the	current	call	satisfies	the	invariant,	
then	the	recursive	call	also	satisfies	the	
invariant.

Context	Arguments	and	Accumulators

• The	book	calls	context	arguments	
"accumulators".

• For	each	function	you	write,	you	need	to	be	clear	
on	what	the	structural	argument	is.
– You've	been	doing	that	already	in	the	strategy

• Unlike	the	book,	we	are	not	going	to	make	a	big	
deal	over	what	is	or	is	not	a	context	
argument/accumulator.

• We	are	also	not	going	to	have	"+	accumulator"	as	
a	strategy	or	have	templates	for	"structural	
decomposition	+	accumulator".	

23

One	less	thing	for	you	
to	stress	over!

This	isn't	completely	new:

Here	are	some	examples	of	WHERE clauses	that	we've	
seen	(or	might	have	seen)	before:

-- A Ring is a (make-ring Real Real)
WHERE inner < outer

-- An TelephoneBook is a ListOfEntries
WHERE the entries are sorted by name

24

More	examples	of	WHERE clauses
unpaused-world-after-tick
: World -> World

GIVEN: a World
WHERE: the world is not paused
RETURNS: the state of the world after the next tick

ball-normal-motion-after-tick
: Ball -> Ball

GIVEN: a Ball
WHERE: we know the ball will not hit the wall on the next

tick
RETURNS: the state of the ball after the next tick.

25

In	each	case,	it	is	the	responsibility	of	
the	caller	to	make	sure	the	invariant	is	
satisfied	before	the	function	is	called.

And	conversely,	the	function	
gets	to	assume	that	the	
invariant	is	satisfied.

Recipe	for	context	arguments

26

Recipe	for	context	arguments
Is	information	being	lost when	you	do	a	structural	recursion?	If	so,	
what?

Formulate	a	generalized	version	of	the	problem	that	works	on	a	
substructure	of	your	original.	Add	a	context	argument	that	
represents	the	information	"above"	the	substructure.		Document	
the	purpose	of	the	context	argument	as	an	invariant	in	your	purpose	
statement.

Design	and	test	the	generalized	function.

Define your	original	function	in	terms	of	the	generalized	one	by	
supplying	an	initial	value	for	the	context	argument.

Wait:	what	do	we	mean	by	"above"?

27

11

55

44

33

22

These	nodes	are	"above"	
the	sublist	(44	55	...)

The	sublist	(44	55	...)

Summary

• Sometimes	you	need	more	information	than	
the	usual	template	gives	you

• So	generalize	the	problem	to	include	the	extra	
information	as	a	parameter

• Design	the	generalized	function
• Then	define	your	original	function	in	terms	of	
the	generalized	one.

28

Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

29

