Halting Measures for Tree-Like
Structures

CS 5010 Program Design Paradigms
Lesson 6.6

@ © Mitchell Wand, 2016
e 1 his work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Learning Outcomes

* At the end of this lesson, the student should
be able to

— Explain the definition of a halting measure for
mutually-recursive functions

— Write a halting measure for functions on S-
expressions that use the template.

Let's review halting measures for list
functions

e Let's look at the template for list data and the
definition of a halting measure.

 Then we'll look at the call graph for a list
function and see what the halting measure
looks like on the call graph.

Review: Template for List data

35 list-fn : ListOfX -»> ??
(define (list-fn 1st)
(cond
[(empty? 1st) ...]
[else (... (first 1st)
(list-fn (rest 1st)))]))

Remember the template
for list data

Review: Halting Measure

* Definition: a halting measure for a particular
function is an integer-valued quantity that
can't be less than zero, and which decreases at
each recursive call in that function.

Another picture: the call graph

list-fn calls itself. The

list-fn halting measure (the size
of the argument)

decreases at each call.

A computation can go
> .
around this cycle only
\ finitely many times,
because the halting

halting measure decreases .
measure IS always d hon-

negative integer.

Now let's do it again for SoS and LoSS

An S-expression of Strings (SoS) is either

-- a Stniing

--a Li

of SoS's (LoSS)
Here's the data
definition again

A List of S0S's (LoSS) is either

-- (cons SoS LoSS)

This is mutual recursion

defined in terms of

SoS LoSS

defined in terms of

And here's the template

33 sos-fn : SoS -> ??
(define (sos-fn s)

(cond
[(string?\s) .
[else (loss

33 loss-fn : ke

(define (loss-fn |

(cond

[(empty? los) .
[else (... (sos-fn (first los))

(loss-fn (rest los)))]))

This is mutual recursion

defined in terms of

sos-fn loss-fn

defined in terms of

10

What's a good halting measure for this
pair of functions?

 We claim that the size of the SoS or LoSS is a
halting measure for this pair of functions.

 What do we mean by size here? Ans: the
number of cons cells

e But wait, you say: when sos-fn calls loss-fn,
this size of the argument doesn't decrease

e Let's look at this more closely by examining
the call graph

Let's draw the call graph in more detail

sos-fn calls loss-fn sos-fn and loss-fn

sos-fn may call other

‘o’ 1) functions, but
L 2
. none of those
|

functions ever call
loss-fn sos-fn or loss-fn

L J
L 2
loss-fn calls sos-fn < ,’ .,
L 2
and loss-fn ™Y

12

Where does the halting measure

decrease?

The halting
measure (the size of
the argument)
decreases along
each arrow labelled
with a >, and never
Increases on any
arrow.

sos-fn

||l)/\

loss-fn

O

>

So the halting
measure decreases
around every cycle
in this graph. Since

the size of the
argument is a non-
negative integer, a
computation can
make only finitely
many calls in this

graph.

Refined Definition of a Halting
Measure

* Definition: a halting measure for a particular
function is an integer-valued quantity that
can't be less than zero, and which decreases

around every cycle in the call graph.

* |[n general, you can't just look at a single
function— you have to trace the call graph.

* For functions that follow the template, the
size of the argument is almost always a
halting measure.

14

A more subtle example
Descendant Trees

(define-struct person (name children))
;3 A Person 1is a

;3 (make-peérson Stri;;j;;;iSPS)

55 A Persons 1IS\onhe

55 -- empty

;5 -- (cons Person Persons)

Two mutually recursive
data definitions

15

What's a good way to measure the size
of one of these?

 Ans: number of nodes in the tree, where a
node is either a make-person or a cons.

* This is the standard way of measuring the size
of a structure.

16

Example of a pair of functions on this

data definition

;3 Person -> Persons
53 STRATEGY: Use template for Person on p
(define (person-descendants p)
(append
(person-childnen p)
ndants (person-children p))))

(persons-desce

55 Persons - ersons
53 STRATEGY: OF map followed by foldr
(define (persons-descendants ps)
(foldr append enipty
(map person-descendants ps)))

With HOFs,
the finding
the call
graph may
take more
care.
Here's an
example.

The call graph for this pair of functions

person-descendants

persons-descendants

18

The halting measure decreases on
both arrows

person-descendants

(person-children p) is v
smaller than p
persons- descendants

All we need is for the
halting measure to decrease map calls person-descendants on

on every cycle, so it would each element of ps; the elements of ps

be ok if one of these >'s was
- are always smaller than ps
an =. Just so long as none

of the calls increases the

' |
halting measure! .

Summary

You should now be able to:

— Explain the definition of a halting measure for
mutually-recursive functions

— Write a halting measure for functions on S-
expressions and other mutually-recursive data
types that use the template.

20

Next Steps

* |f you have questions about this lesson, ask
them in class or on the Discussion Board

e Go on to the next lesson

21

