
Halting	Measures	for	Tree-Like	
Structures

CS	5010	Program	Design	Paradigms
Lesson	6.6

1
©	Mitchell	Wand,	2016
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.



Learning	Outcomes

• At	the	end	of	this	lesson,	the	student	should	
be	able	to
– Explain	the	definition	of	a	halting	measure	for	
mutually-recursive	functions

–Write	a	halting	measure	for	functions	on	S-
expressions	that	use	the	template.

2



Let's	review	halting	measures	for	list	
functions

• Let's	look	at	the	template	for	list	data	and	the	
definition	of	a	halting	measure.

• Then	we'll	look	at	the	call	graph	for	a	list	
function	and	see	what	the	halting	measure	
looks	like	on	the	call	graph.

3



Review:	Template	for	List	data

;; list-fn : ListOfX -> ??
(define (list-fn lst)
(cond
[(empty? lst) ...]
[else (... (first lst)

(list-fn (rest lst)))]))

4

Remember	the	template	
for	list	data



Review:	Halting	Measure

• Definition:	a	halting	measure	for	a	particular	
function	is	an	integer-valued	quantity	that	
can't	be	less	than	zero,	and	which	decreases at	
each	recursive	call	in	that	function.

5



Another	picture:	the	call	graph

6

list-fn
list-fn calls	itself.	The	

halting	measure	(the	size	
of	the	argument)	

decreases	at	each	call.	

A	computation	can	go	
around	this	cycle	only	
finitely	many	times,	
because	the	halting	

measure	is	always	a	non-
negative	integer.	

halting	measure	decreases

<



Now	let's	do	it	again	for	SoS and	LoSS

An	S-expression	of	Strings	(SoS)	is	either
-- a	String
-- a	List	of	SoS's (LoSS)

A	List	of	SoS's (LoSS)	is	either
-- empty
-- (cons	SoS LoSS)

7

Here's	the	data	
definition	again



This	is	mutual	recursion

SoS LoSS

8

defined	in	terms	of	

defined	in	terms	of	



And	here's	the	template
;; sos-fn : SoS -> ??
(define (sos-fn s)

(cond
[(string? s) ...]
[else (loss-fn s)]))

;; loss-fn : LoSS -> ??
(define (loss-fn los)

(cond
[(empty? los) ...]
[else (... (sos-fn (first los))

(loss-fn (rest los)))]))

9



This	is	mutual	recursion

sos-fn loss-fn

10

defined	in	terms	of	

defined	in	terms	of	



What's	a	good	halting	measure	for	this	
pair	of	functions?

• We	claim	that	the	size	of	the	SoS or	LoSS is	a	
halting	measure	for	this	pair	of	functions.

• What	do	we	mean	by	size	here?	Ans:	the	
number	of	cons	cells

• But	wait,	you	say:	when	sos-fn calls	loss-fn,	
this	size	of	the	argument	doesn't	decrease

• Let's	look	at	this	more	closely	by	examining	
the	call	graph

11



Let's	draw	the	call	graph	in	more	detail

12

sos-fn

loss-fn

sos-fn calls	loss-fn

loss-fn calls	sos-fn
and	loss-fn

sos-fn and	loss-fn
may	call	other	
functions,	but	
none	of	those	

functions	ever	call	
sos-fn or	loss-fn



Where	does	the	halting	measure	
decrease?

13

The	halting	
measure	(the	size	of	

the	argument)	
decreases	along	

each	arrow	labelled	
with	a	>,	and	never	
increases	on	any	

arrow.

So	the	halting	
measure	decreases	
around	every	cycle	
in	this	graph.	Since	
the	size	of	the	

argument	is	a	non-
negative	integer,	a	
computation	can	
make	only	finitely	
many	calls	in	this	

graph.

sos-fn

loss-fn
<

<

=



Refined	Definition	of	a	Halting	
Measure

• Definition:	a	halting	measure	for	a	particular	
function	is	an	integer-valued	quantity	that	
can't	be	less	than	zero,	and	which	decreases	
around	every	cycle	in	the	call	graph.

• In	general,	you	can't	just	look	at	a	single	
function– you	have	to	trace	the	call	graph.

• For	functions	that	follow	the	template,	the	
size	of	the	argument	is	almost	always	a		
halting	measure.

14



A	more	subtle	example
Descendant	Trees

(define-struct person (name children))

;; A Person is a 
;; (make-person String Persons)

;; A Persons is one of
;; -- empty
;; -- (cons Person Persons)

15

Two	mutually	recursive	
data	definitions



What's	a	good	way	to	measure	the	size	
of	one	of	these?

• Ans:	number	of	nodes	in	the	tree,	where	a	
node	is	either	a	make-person or	a	cons.

• This	is	the	standard	way	of	measuring	the	size	
of	a	structure.

16



Example	of	a	pair	of	functions	on	this	
data	definition

;; Person -> Persons
;; STRATEGY: Use template for Person on p
(define (person-descendants p)
(append
(person-children p)
(persons-descendants (person-children p))))

;; Persons -> Persons
;; STRATEGY: Use HOF map followed by foldr
(define (persons-descendants ps)
(foldr append empty
(map person-descendants ps)))

17

With	HOFs,	
the	finding	
the	call	

graph	may	
take	more	

care.		
Here's	an	
example.



The	call	graph	for	this	pair	of	functions

18

person-descendants

persons-descendants

via	map



The	halting	measure	decreases	on	
both	arrows

19

person-descendants

persons-descendants

<<(person-children	p)	is
smaller	than	p

map	calls	person-descendants on
each	element	of	ps;	the	elements	of	ps
are	always	smaller	than	ps

All	we	need	is	for	the	
halting	measure	to	decrease	
on	every	cycle,	so	it	would	
be	ok	if	one	of	these	>'s	was	
an	=.		Just	so	long	as	none	
of	the	calls	increases the	

halting	measure!



Summary

• You	should	now	be	able	to:
– Explain	the	definition	of	a	halting	measure	for	
mutually-recursive	functions

–Write	a	halting	measure	for	functions	on	S-
expressions	and	other	mutually-recursive	data	
types	that	use	the	template.

20



Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	in	class	or	on	the	Discussion	Board

• Go	on	to	the	next	lesson

21


