
foldr

CS	5010	Program	Design	Paradigms
Lesson	5.4

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• In	this	lesson,	we	will	explore	another	
common	pattern	in	functions	defined	by	the	
list	template.

• We	will	generalize	this	to	a	function	called	
foldr.

• We	will	visualize	how	foldr works,	and	show	
an	important	application	area.

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– describe,	recognize,	and	use	the	foldr pattern.

3

What	else	could	be	different?

4

;ListOfNumber -> ListOfNumber
(define (add-1-to-each lon)
(cond
[(empty? lon) empty]
[(else (cons

(add1
(first lon))

(add1-to-each
(rest lon))))]))

;ListOfEmployee -> ListOfString
(define (extract-names lop)
(cond
[(empty? lop) empty]
[else (cons

(Employee-name
(first lop))

(extract-names
(rest lop)))]))

Here	is	the	example	we	used	to	introduce	map.		In	
this	example,	both	of	the	brown	functions	are	cons,	
but	in	some	other	function	there	could	be	
something	else	in	that	position.

Another	example

5

;; ListOfNumber -> Number
(define (sum lon)
(cond
[(empty? lon) 0]
[else (+

(first lon)
(sum
(rest lon)))]))

;; ListOfNumber -> Number
(define (product lon)
(cond
[(empty? lon) 1]
[else (*

(first lon)
(product
(rest lon)))]))

Both	these	functions	take	a	list	of	numbers	and	return	a	number.		
sum returns	the	sum	of	the	elements	of	the	given	list.		product
returns	the	product	of	the	elements	of	the	given	list.
These	functions	are	just	alike,	except	for	the	differences	marked	in	
red	and	green.

Let's	generalize	these
• sum and	product can	be	generalized	to	a	function	we	call	

foldr,	with	two	new	arguments:	one	called	fcn,	for	the	
function	in	the	green	position,	and	one	called	val,	for	the	
value	in	the	red	position.		The	strategy	for	foldr is	using	the	
template	for	ListOfX on	its	list	argument.

• Our	original	sum and	product functions	can	be	recreated	
by	supplying	+ and	0,	or	* and	1,	as	the	two	arguments.		
The	strategy	for	these	new	versions	of	sum and	product is	
"Use	HOF	foldr on	...".

• The	name	foldr is	a	standard	name	for	this	function,	so	that	
is	the	name	we	will	use.		foldr is	already	defined	in	ISL,	so	
you	don't	need	to	write	out	the	definition.

• Let's	look	at	the	code:

6

Create	two	new	arguments	for	the	two	
differences.		

7

(define (foldr fcn val lon)
(cond

[(empty? lon) val]
[else (fcn

(first lon)
(foldr fcn val (rest lon)))]))

;; strategy: Use HOF foldr on lon
(define (sum lon) (foldr + 0 lon))
(define (product lon) (foldr * 1 lon))

We	call	this	"foldr"	(we'll	explain	the	name	later)

This	is	predefined	in	ISL,	so	
you	don't	need	to	write	
out	this	definition

What	is	the	purpose	statement?
;; foldr : (X Y -> Y) Y ListOfX -> Y
;; RETURNS: the result of applying f on the
;; elements of the given list
;; from right to left, starting with base.
;; (foldr f base (list x_1 ... x_n))
;; = (f x_1 ... (f x_n base))

8

What	is	the	contract	for	foldr?
Based	on	our	two	examples	we	might	guess	the	
following	contract	for	foldr:	Here	is	one	guess	for	the	
contract	for	foldr,	based	on	our	two	examples:	

foldr :
(Number Number -> Number) Number ListOfNumber

-> Number

This	works,	because	+ and	* both	have	contract	
(Number Number -> Number),	and	0	and	1	are	
both	numbers.

9

What	is	the	contract	for	foldr?
But	there	is	nothing	in	the	definition	of	foldr that	mentions	
numbers,	so	foldr could	work	at	contract

(X X -> X) X ListOfX -> X

that	is,	you	could	use	foldr at
(Boolean Boolean) Boolean ListOfBoolean
-> Boolean

or
(Employee Employee) Employee ListOfEmployee

-> Employee

10

Let's	watch	foldr compute	on	this	list

11

empty

x4

x3

x2

x1

fcn

fcn

fcn

fcn

valx1

x3

x2

x4

y2

y3

y4

y1

Step	through	the	animation	to	watch	the	computation	of
(foldr fcn val (list x4 x3 x2 x1))

What	can	we	learn	from	this?
• The	base	value	val is	a	possible	2nd argument	to	fcn.
• The	result	of	fcn becomes	a	2nd argument	to	fcn.
• So	this	will	work	as	long	as	
– val,
– the	2nd argument	to	fcn,	
– and	the	result	of	fcn
are	all	of	the	same	type.

• So	fcnmust	satisfy	the	contract	(X Y -> Y) for	
some	X and	Y.

12

What	else	can	we	learn?

• The	elements	of	the	list	become	the	first	
argument	to	fcn.

• So	if	fcn satisfies	the	contract	(X Y -> Y),	
then	the	list	must	be	of	type	ListOfX.

• So	the	contract	for	foldr	is:

13

foldr : (X Y -> Y) Y ListOfX -> Y

The	contract	for	foldr	(again!)

• The	contract	for	foldr	is

• So	foldr takes	3	arguments:
– a	combiner	function	that	satisfies	the	contract

(X Y -> Y)
– a	base	value	of	type	Y
– and	a	list	of	X's.

• And	it	returns	a	value	of	type	Y.

14

foldr : (X Y -> Y) Y ListOfX -> Y

Another	picture	of	foldr

15

()x1

f

x3

f

x2

f

x4

f

x5

f val

(foldr f val (list x1 ... x5))

Here's	another	visualization	of	foldr	that	you	may	
find	helpful.

What	kind	of	data	is	on	each	arrow?

16

x_i

f

X
Y Y

Y

(foldr f a (list x1 ... x5))

We	can	think	of	foldr as	starting	with	the	base	
value	val,	and	putting	it	through	a	pipeline	of	
f's,	where	each	f also	takes	one	of	the	x's	as	an	
input.		The	x's	are	taken	right-to-left,	which	is	
why	it	is	called	foldr	.

17

()x1

f

x3

f

x2

f

x4

f

x5

f val

Another	example:
;; strategy: combine simpler functions
(define (add1-if-true b n)
(if b (+ n 1) n)))

;; strategy: Use HOF foldr on lob
(define (count-trues lob)
(foldr add1-if-true 0 lob))

Or even better:

;; strategy: Use HOF foldr on lob
(define (count-trues lob)
(local ((define (add1-if-true b n)

(if b (+ n 1) n)))
(foldr add1-if-true 0 lob)))

18

What	is	the	contract	for	
add1-if-true ?		At	what	
contract	is	foldr being	
used	in	this	example?		
What	is	returned	by	
count-trues ?	Try	to	
answer	these	questions	
before	proceeding	to	the	
next	slide.

What	are	the	contracts?
add1-if-true : Boolean Number -> Number
In	general:
foldr : (X Y -> Y) Y ListOfX -> Y
In	this	case,	X =	Boolean	and	Y =	Number,	so	we	are	using
foldr at	the	contract	

(Boolean Number -> Number)
Number ListOfBoolean -> Number

and	therefore
count-trues : ListOfBoolean -> Number

19

Local	functions	need	contracts	and	
purpose	statements	too

(define (count-trues lob)
(local (; add1-if-true : Boolean Number -> Number

; RETURNS: the number plus 1 if the boolean is
; true, otherwise returns the number unchanged.
(define (add1-if-true b n) (if b (+ n 1) n)))

(foldr add1-if-true 0 lob)))

• They	count	as	help	functions,	so	they	don't	
need	separate	tests.

20

Local	functions	need	their	deliverables,	too.		They	
count	as	help	functions,	so	they	don't	need	separate	
tests.		If	they	are	complicated	enough	to	need	
examples	or	tests,	then	you	should	make	them	
independent	functions	with	a	full	set	of	deliverables.

The	whole	thing	
(less	examples	and	tests)

;; count-trues : ListOfBoolean -> Number
;; RETURNS: the number of trues in the given list of booleans.
;; STRATEGY: Use HOF foldr on lob
(define (count-trues lob)
(local (; add1-if-true : Boolean Number -> Number

; RETURNS: the number plus 1 if the boolean is
; true, otherwise returns the number unchanged.
(define (add1-if-true b n)

(if b (+ n 1) n)))
(foldr add1-if-true 0 lob)))

21

Mapreduce

(mapreduce f v g lst) = (foldr f v (map g
lst))

Therefore:
(mapreduce f v g (list x1 ... xn)) =

(f (g x1)
(f (g x2)

(f (g x3)
...

v)))

22

You	may	have	heard	of	
mapreduce,	which	is	used	for	
processing	large	data	sets.		We	
can	define	mapreduce using	our	
functions	as	shown	here.

Why	mapreduce wins

• One	of	the	great	things	about	mapreduce is	
that	it	can	often	be	computed	in	parallel.

• If	f is	associative,	and	v is	its	identity,	can	turn	
the	calls	to	f into	a	tree	and	do	them	in	
parallel	on	a	server	farm!		

• For	a	data	set	of	size	n,	this	reduces	the	
processing	time	from	n to	log(n).

• Here	is	a	picture:

23

From	linear	time	to	logarithmic

24

f

f f

g

x1

g

x2

g

x3

g

x4

(f (g x1)
(f (g x2)

(f (g x3)
(f (g x4)

v))))

=

Where	does	the	data	come	from?
• The	data	might	not	be	a	list.
• It	might	be	data	extracted	from	a	large	database.
• So	your	application	would	have	2	parts
– some	SQL	to	extract	a	table	full	of	data	(like	"map")
– the	function	you	want	to	reduce	the	data	with.

• The	SQL	insulates	your	application	from	the	physical	
layout	of	the	DB;	the	SQL	query	optimizer	can	probably	
get	your	data	out	of	the	DB	fast.

• mapreduce systems	(like	Hadoop)	allow	you	to	
configure	the	'reduce'	phase	to	make	use	of	the	
available	hardware.

25

Summary

• You	should	now	be	able	to:
– describe,	recognize,	and	use	the	foldr pattern.
– state	the	contracts	for	ormap,	andmap,	and	
filter and	foldr,	and	use	them	appropriately.

– combine	these	functions	using	higher-order	
function	combination.

26

Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	5.4	
• Go	on	to	the	next	lesson

27

