
ormap,	andmap,	and	filter

CS	5010	Program	Design	Paradigms	
Lesson	5.3

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• In	this	lesson,	we	will	see	more	common	
patterns	of	function	definitions	that	differ	only	
by	what	functions	they	call.

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– recognize	the	ormap,	andmap,	and	filter
patterns

– state	the	contracts	for	ormap,	andmap,	and	
filter,	and	use	them	appropriately.

– combine	these	functions	using	higher-order	
function	combination

3

Let's	look	at	find-dog again
;; find-dog : ListOfString -> Boolean
;; RETURNS: true if "dog" is in the given list.
;; STRATEGY: Use template for ListOfString on los
(define (find-dog los)
(cond
[(empty? los) false]
[else (or

(string=? (first los) "dog")
(find-dog (rest los)))]))

(check-equal? (find-dog (list "cat" "dog" "weasel"))
true)

(check-equal? (find-dog (list "cat" "elephant" "weasel"))
false)

4

Here's	another	function	with	a	similar	
structure

;; has-even? : ListOfInteger -> Boolean
;; RETURNS: true iff the given list contains
;; an even number
;; STRATEGY: Use ListOfInteger on los

(define (has-even? los)
(cond
[(empty? los) false]
[else (or

(even? (first los))
(has-even? (rest los)))]))

5

Let's	compare
(define (find-dog los)
(cond
[(empty? los) false]
[else
(or
(string=?
(first los) "dog")

(find-dog
(rest los)))]))

(define (has-even? los)
(cond
[(empty? los) false]
[else
(or
(even? (first los))

(has-even?
(rest los)))]))

6

Generalize	by	adding	an	argument
;; STRATEGY: Use template for ListOfX on lst
(define (ormap fn lst)

(cond
[(empty? lst) false]

[else
(or

(fn (first lst))
(ormap fn (rest lst)))]))

7

As	before,	we	can	generalize	by	adding	an	
argument	for	the	difference.

And	re-create	the	originals
;; STRATEGY: Use HOF ormap on lst
(define (find-dog lst)
(ormap
;; String -> Boolean
(lambda (str) (string=? "dog" str))
lst)))

;; STRATEGY: Use HOF ormap on lst
(define (has-even? lst)
(ormap even? lst))

8

Again	as	before,	we	re-
create	the	originals	using	
our	generalized	function.

If	you're	afraid	of	lambda,	you	
can	define	is-dog? or	use	a	
local.
But	it's	good	to	get	
comfortable	with	lambda– it's	
so	useful	that	it	was	added	to	
Java	as	of	Java	8.

What's	the	contract	for	ormap?

• Let's	see	what	kind	of	values	each	of	the	
pieces	of	ormap returns.

• Step	through	the	animation	on	the	next	slide	
to	watch	this	work.

9

ormap : (X -> Bool) ListOfX -> Bool
(define (ormap fn lst)

(cond
[(empty? lst) false]
[else

(or
(fn (first lst))
(ormap fn (rest lst)))]))

ormap : (X -> Bool) ListOfX -> Bool
(define (ormap fn lst)

(cond
[(empty? lst) false]
[else

(or
(fn (first lst))
(ormap fn (rest lst)))]))

ormap : (X -> Bool) ListOfX -> Bool
(define (ormap fn lst)

(cond
[(empty? lst) false]
[else

(or
(fn (first lst))
(ormap fn (rest lst)))]))

What's	the	contract?

Boolean

Boolean

ListOfXX

X -> Bool

Both	branches	of	the	cond
return	booleans,	so	ormap
must	return	a	Boolean

fnmust	take	an	X,	because	
its	argument	is	an	X,	and	it	
must	return	a	boolean,	
because	its	return	value	is	
an	argument	to	or.

So	fn must	be	a	function	from	X's	to	Booleans,	and	lst must	be	a	
ListOfX.		We	write	all	this	down	in	the	contract. 10

What's	the	purpose	statement?

We’ve	written	the	function	definition	and	the	contract,	
but	we	won’t	be	done	until	we	have	a	purpose	
statement.		Having	a	purpose	statement	allows	another	
programmer	to	use	this	function	without	having	to	look	
at	the	code.

11

;; ormap : (X -> Boolean) ListOfX -> Boolean
;; GIVEN: A predicate p on X's and a list of X's, lox
;; RETURNS: true iff p holds for at least one value in lox
;; that is, (ormap p (list x_1 ... x_n))
;; = (or (p x_1) ... (p x_n))
(define (ormap p lox) ...)

And	of	course	we	can	do	the	same	
thing	for	and.

(define (andmap fn lst)
(cond

[(empty? lst) true]
[else

(and
(fn (first lst))
(andmap fn (rest lst)))]))

12

Contract	and	Purpose	Statement
;; andmap : (X -> Bool) ListOfX -> Bool
;; GIVEN: A predicate p on X's
;; and a list of X's, lox
;; RETURNS: true iff p holds for every value
;; in lox
;; that is, (andmap p (list x_1 ... x_n))
;; = (and (p x_1) ... (p x_n))

13

The	contract	and	purpose	
statement	look	very	much	like	
the	ones	for	ormap.

Another	common	pattern

• Another	common	list-manipulation	problem	is	
to	take	a	list	and	return	a	list	of	those	values	in	
the	list	that	pass	a	certain	test.

• For	example,	here's	a	function	that	returns	
only	the	even	values	in	a	list	of	integers.

14

only-evens
;; only-evens
;; : ListOfInteger -> ListOfInteger
;; returns the list of all the even values
;; in the list
;; STRATEGY: Use template for ListOfInteger on lst
(define (only-evens lst)

(cond
[(empty? lst) empty]
[else (if (even? (first lst))

(cons (first lst)
(only-evens (rest lst)))

(only-evens (rest lst)))]))

15

Generalize:	filter
;; filter : (X -> Boolean) ListOfX
;; -> ListOfX
;; RETURNS: the list of all the elements
;; in the list that satisfy the test
;; STRATEGY: Use template for ListOfX on lst
(define (filter fn lst)

(cond
[(empty? lst) empty]
[else (if (fn (first lst))

(cons (first lst)
(filter fn (rest lst)))

(filter fn (rest lst)))]))

16

The	obvious	thing	to	
do	here	is	to	replace	
even?	with	an	extra	
argument.

These	can	be	strung	together

;; ListOfInteger -> ListOfInteger
;; RETURNS: the squares of the
;; evens in the given list
;; STRATEGY: Use HOF filter on lon,
;; followed by HOF map
(define (squares-of-evens lon)
(map sqr
(filter even? lon)))

17

One	of	the	nice	things	
about	these	functions	is	
that	they	can	be	
combined	to	create	
multi-pass	functions.

Go	crazy	with	these!

;; STRATEGY: Use HOF filter on lon,
;; followed by HOF map twice
(define (squares-of-evens+1 lon)
(map add1
(map sqr
(filter even? lon))))

18

But	always	make	sure	that	
your	definitions	are	

CLEAR	AND	
UNDERSTANDABLE!

Summary

• You	should	now	be	able	to:
– recognize	the	ormap,	andmap,	and	filter
patterns

– state	the	contracts	for	ormap,	andmap,	and	
filter ,	and	use	them	appropriately.

– combine	these	functions	to	form	more	
complicated	operations	on	lists.

19

Next	Steps

• Study	05-3-map.rkt	in	the	examples	folder.
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	5.3
• Go	on	to	the	next	lesson

20

