
Generalizing	Over	Functions

CS	5010	Program	Design	Paradigms
Lesson	5.2

1
©	Mitchell	Wand,	2012-2016
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• In	the	previous	lesson,	we	generalized	over	
data	items	that	were	strings.		In	this	lesson,	
we	will	see	how	to	use	the	same	idea	to	
generalize	over	data	items	that	are	functions.

• We'll	also	learn	about	a	new	strategy,	called	
Use	HOF	("Use	higher-order	function")

• We'll	learn	how	to	write	contracts	for	
functions	that	take	other	functions	as	
arguments.

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	to:
– recognize	when	two	function	definitions	differ	only	in	
what	functions	are	called	at	particular	places	in	the	
definition

– apply	the	generalization	technique	from	Lesson	5.1	to	
such	situations.

– use	the	new	strategy,	called	Use	HOF
– use	lambda	to	define	functions	that	don't	need	a	
name.

– read	and	write	contracts	for	functions	that	take	other	
functions	as	arguments.

3

An	Example
;; ListOfNumber -> ListOfNumber
;; GIVEN: a list of numbers
;; RETURNS: a list with 1 added to each number
;; (add-1-to-each (list 11 22 33)) = (list 12 23 34)
;; STRATEGY: Use template for ListOfNumber on lon

(define (add-1-to-each lon)
(cond

[(empty? lon) empty]
[(else (cons

(add1 (first lon))
(add1-to-each (rest lon))))]))

4

Compare	it	to	this	function
(define-struct employee (name salary))
;; An Employee is a (make-employee String PosInt)

;; extract-names : ListOfEmployee -> ListOfString
;; GIVEN: a list of employees
;; RETURNS: the list of their names
;; STRATEGY: Use template for ListOfEmployee on loe
(define (extract-names loe)

(cond
[(empty? loe) empty]
[else (cons

(employee-name (first loe))
(extract-names (rest loe)))]))

5

interp:	salary	in	
USD*100

These	functions	only	differ	in	one	
place

6

ListOfNumber -> ListOfNumber
(define (add-1-to-each lon)
(cond
[(empty? lon) empty]
[(else (cons

(add1
(first lon))

(add1-to-each
(rest lon))))]))

ListOfEmployee -> ListOfString
(define (extract-names loe)
(cond
[(empty? loe) empty]
[else (cons

(employee-name
(first loe))

(extract-names
(rest loe)))]))

On	one	side,	we	use	function	add1,	and	on	the	
other	we	use	the	function	employee-name.	

(define (apply-to-each fn lst)
(cond

[(empty? lst) empty]
[else (cons

(fn (first lst))
(apply-to-each fn (rest lst)))]))

(define (add-1-to-each lon)
(apply-to-each add1 lon))

(define (extract-names loe)
(apply-to-each employee-name loe))

7

So	we	can	do	the	same	
thing	we	did	before:		we	
add	an	argument	for	the	
difference.		

We	recover	the	original	functions	by	passing	one	or	the	
other	function	as	the	value	of	the	argument.

BSL	does	not	allow	functions	as	
arguments,	so	we	switch	to	
Intermediate	Student	Language	
(ISL).

Let's	watch	this	work
(apply-to-each add1 (cons 10 (cons 20 (cons 30 empty))))
= (cons (add1 10)

(apply-to-each add1 (cons 20 (cons 30 empty))))
= (cons 11

(apply-to-each add1 (cons 20 (cons 30 empty))))
= (cons 11

(cons (add1 20)
(apply-to-each add1 (cons 30 empty)))

= (cons 11 (cons 21 (apply-to-each add1 (cons 30 empty))))
= (cons 11 (cons 21 (cons (add1 30)

(apply-to-each add1 empty))))
= (cons 11 (cons 21 (cons 31 empty))))

8

Digression:	Computing	as	algebra

• The	calculation	on	the	previous	slide	just	used	
equational reasoning,	like	you	did	in	Middle	
School	algebra.

• The	functional	approach	to	programming,	
which	we	have	been	using	now,	allows	us	to	
reason	about	programs	just	using	equations	
like	these.

• This	is	much	simpler	than	reasoning	about	
programs	with	assignment	statements.

9

A	small	but	important	detail:	we	need	
to	switch	languages

• Racket's	Basic	Student	Language	(BSL)	does	
not	allow	us	to	pass	functions	as	arguments.

• So	we	use	the	Intermediate	Student	Language	
+	Lambda	(ISL+Lambda),	which	allows	
functions	as	arguments	and	has	several	other	
useful	features.

• We	will	use	this	for	the	next	several	weeks.

10

What	about	the	design	strategy?
The	definition	for	apply-to-each follows	the	template,	so	the
strategy	is	"use	template".		This	will	work	on	lists	of	any
kind	of	value,	so	we	say	it	uses	the	template	for	ListOfX.

;; STRATEGY: Use template for ListOfX on lst
(define (apply-to-each fn lst)

(cond
[(empty? loe) empty]
[else (cons

(fn (first lst))
(apply-to-each fn (rest lst)))]))

11

What	about	add-1-to-each	and	
extract-names?

• Our	new	definitions	for	add-1-to-each and	
extract-names do	not	follow	the	template:	
they	just	use apply-to-each.		

• We	say	that	these	functions	use	the	strategy	of	
using	a	higher-order	function	(HOF).		

• A	higher-order	function	is	simply	a	function	
where	one	or	more	of	the	arguments	is	a	
function,	such	as	add1 or	employee-name.

• Note	that	this	terminology	is	different	from	that	
in	HtDP.

12

What	about	add-1-to-each	and	
extract-names?

;; strategy: Use HOF apply-to-each on lon
(define (add-1-to-each lon)

(apply-to-each add1 lon))

;; strategy: Use HOF apply-to-each on lon
(define (extract-names loe)
(apply-to-each employee-name loe))

13

Testing
• Testing	for	functions	defined	using	higher-order	
function	composition	is	just	like	testing	we	saw	in	
the	previous	lesson.

• Original	functions	must	be	tested	&	working	first
• Then	write	the	generalized	function	and	redefine	
your	old	functions	in	terms	of	the	generalized	
one.

• Then	comment	out	the	old	definitions,	so	your	
old	tests	will	now	see	the	new	definitions.

• The	original	tests	should	still	pass.

14

Doing	something	complicated?

• The	function	to	be	passed	to	apply-to-each is	
not	always	a	built-in	Racket	function.	

• Then	just	define	your	own:
(define (add5 n) (+ n 5))
(define (add-5-to-each lon)

(apply-to-each add5 lon))
• Of	course	we'll	need	contracts,	purpose	
statements,	etc.,	for	add5.

15

You	can	use	ISL's	local to	do	this
;; ListOfNumber -> ListOfNumber
;; GIVEN: a list of numbers
;; RETURNS: a list like the given one,
;; but with 5 added to each number.
;; STRATEGY: Use HOF apply-to-each
;; on lon
(define (add-5-to-each lon)

(local
;; add5 : Number -> Number
;; RETURNS: its argument + 5
((define (add5 n) (+ n 5)))
(apply-to-each add5 lon)))

16

In	ISL,	local	allows	
you	to	create	local	
definitions.		See	
HtDP2,	sec	18.2.

Must	provide	contract	
and	purpose	statement	
for	the	local	function.

Lambda can	be	used	to	define	a	
function	without	giving	it	a	name.

(define (add-5-to-each lon)
(apply-to-each
;; Number -> Number
;; RETURNS: its argument + 5
(lambda (n) (+ n 5))
lon))

17

If	you	write	a	function	using	lambda,	you	still	need	a	
contract	and	purpose	statement.	

A	function	that	adds	5	to	its	argument

Let's	stop	and	talk	about	lambda for	a	
minute

• The	value	of	a	lambda expression	is	a	
function.

• You	can	use	the	lambda expression	anywhere	
you	would	use	the	function

• The	value	of	(lambda (n) (+ n 5)) is	a	
function	that	adds	5	to	its	argument.

• (apply-to-all (lambda (n) (+ n 5)) lon)
returns	a	list	like	lon,	but	with	5	added	to		
each	element.

18

Using	lambda cuts	down	on	the	junk	
in	your	code

These	two	are	the	same:

(local
((define (add5 n) (+ n 5))
(apply-to-all add5 lon))

(apply-to-all (lambda (n) (+ n 5)) lon)

Each	returns	a	list	like	lon,	but	with	5	added	to	each	
element.

19

Back	to	our	example:	where	does	the	
value	of	n come	from?

lon = (list 10 20 30 40)

(apply-to-each
(lambda (n) (+ n 5))
lon)

= (list 15 25 35 45)

20

apply-to-each applies	the	
lambda-function	to	each	
element	of	the	list	in	turn.		
Here,	n takes	on	the	value	of	
each	element	of	the	list.

Opportunity	for	more	generalization

• The	5	is	a	constant,	so	it	can	be	generalized	on	
by	replacing	it	with	a	new	argument	x.		

• Example:
(add-x-to-each (list 10 20 30) 7)

= (list 17 27 37)
• We'll	replace	the	local	function	add5 by	a	new	
function	called	addx,	which	adds	x to	its	
argument	to	its	argument	n.

21

Here's	the	definition
;; add-x-to-each
;; : ListOfNumber Number -> ListOfNumber
;; GIVEN: a list of numbers and a number
;; RETURNS: a list of numbers like the
;; given one, except that the given
;; number is added to each element of the
;; list.
;; STRATEGY: Use HOF apply-to-each on lon
(define (add-x-to-each lon x)

(local ((define (addx n) (+ n x)))
(apply-to-each addx lon)))

22

As	before,	lambda	can	be	used	in	
order	to	avoid	having	to	introduce	a	

local	name
(define (add-x-to-each lon x)

(apply-to-each
;; Number -> Number
;; RETURNS: the sum of its argument
;; and the value of x.
(lambda (n) (+ n x))
lon))

23

What	is	the	contract	for	apply-to-
each?

• Here	are	two	examples	of	the	use	of	apply-to-each.		

• Each	use	can	be	described	as	follows:		apply-to-each	
takes	a	function	from	X's	to	Y's,	and	a	list	of	X's,	and	it	
returns	a	list	of	Y's

• In	the	first	example	X is	Number	and	Y is	also	Number.
• In	the	second	example,	X is	Employee	and	Y is	String.

24

(apply-to-each add1 lon)
(apply-to-each employee-name loe)

What	is	the	contract	for	apply-to-
each?

• We	observed	that	apply-to-each	takes	a	
function	from	X's	to	Y's,	and	a	list	of	X's,	and	it	
returns	a	list	of	Y's

• We	write	this	down	as	a	contract	as	follows:

25

(X->Y) ListOfX -> ListOfY
apply-to-each :

Understanding	this	contract	(1)

• Here	there	is	something	new:	one	of	the	
arguments	is	a	function,	so	the	contract	specifies	
the	contract	for	that	function:	the	first	argument	
of	apply-to-eachmust	itself	be	a	function	that	
takes	an	X and	returns	a	Y.		We	write	this	using	
the	notation	(X->Y).

• Can't	use	any	old	function	as	the	first	argument–
couldn't	use	+,	for	example.

26

(X->Y) ListOfX -> ListOfY
apply-to-each :

Understanding	this	contract	(2)

• The	X	and	Y	mean	that	this	function	works	for	any	
choice	of	X	and	Y.

• For	example,	we	could	use	apply-to-each as
(Number -> Number) ListOfNumber

-> ListOfNumber

or	as	
(Employee -> String) ListOfEmployee

-> ListOfString

27

(X->Y) ListOfX -> ListOfY
apply-to-each :

We	say	that	a	function	
with	a	contract	like	this	

"polymorphic"

Let's	call	this	by	its	correct	name

• The	standard	name	of	apply-to-each is	
map.

• That's	what	we'll	call	it	from	now	on.

28

Higher-Order	Functions	FTW
• Now	that	we	have	higher-order	functions,	we	can	
compose	functions	more	easily.		Example:

;; STRATEGY: Use HOF map on lon
;; (twice)
(define (sqr-plus-one lon)
(map add1 (map sqr lon)))

(sqr-plus-one (list 2 3 4))
= (list 5 10 17)

29

One-Pass	vs	Multi-Pass	functions
Here	are	two	versions	of	sqr-plus-one:

(define (sqr-plus-one lon)
(map add1 (map sqr lon)))

(define (sqr-plus-one lon)
(map

(lambda (n) (+ 1 (sqr n)))
lon))

(sqr-plus-one (list 2 3 4))
= (list 5 10 17)

30

Hand	simulate	each	of	these	
functions,	like	we	did	for	
(map	add1	...)	back	on	slide	7.

The	first	version	makes	TWO	
passes	through	the	argument.			
The	second	version	goes	
through	the	argument	only	
once.		

Which	of	these	is	clearer?		
Which	might	be	more	
efficient	if	the	list	is	long?

Summary

• At	the	end	of	this	lesson	you	should	be	able	to:
– recognize	when	two	function	definitions	differ	only	in	
what	functions	are	called	at	particular	places	in	the	
definition

– apply	the	generalization	technique	from	Lesson	5.1	to	
such	situations.

– use	the	new	strategy,	called	Use	HOF
– use	lambda	to	define	functions	that	don't	need	a	
name.

– read	and	write	contracts	for	functions	that	take	other	
functions	as	arguments.

31

Next	Steps

• Study	05-3-map.rkt	in	the	examples	folder
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	5.2
• Go	on	to	the	next	lesson

32

