
Lists	of	Structures

CS	5010	Program	Design	Paradigms
Lesson	4.3

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• Lists	of	structures	occur	all	the	time
• Programming	with	these	is	no	different:
– write	down	the	data	definition,	including	
interpretation	and	template

– Follow	the	Recipe!

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– write	down	a	template	for	lists	of	compound	data
– use	the	template	to	write	simple	functions	on	lists	
of	compound	data

3

Programming	with	lists	of	structures

• Programming	with	lists	of	structures	is	no	
different	from	programming	with	lists	of	
scalars,	except	that	we	make	one	small	change	
in	the	recipe	for	templates

4

Example:	modeling	a	bookstore

• Let's	imagine	a	program	to	help	manage	a	
bookstore.

• We'd	like	to	know	which	books	sell	and	when	
they	sold.		

• To	do	this	we've	decided	to	keep	track	of	the	
state	of	the	bookstore,	which	is	a	date	and	the	
inventory	of	books	in	stock	on	that	date.

5

Books

6

(define-struct book (isbn author title on-hand price))

;; A Book is a
;; (make-book NonNegInt String String NonNegInt NonNegInt)
;; Interpretation:
;; --isbn is the ISBN of the book
;; --author is the author’s name
;; --title is the title
;; --on-hand is the number of copies on hand
;; --price is the price in USD*100

;; book-fn : Book -> ??
;; (define (book-fn b)
;; (... (book-isbn b) (book-author b)
;; (book-title b) (book-on-hand b)
;; (book-price b)))

Here	is	the	data	definition	for	a	
book	in	a	bookstore,	with	
structure	definition,	data	
definition,	interpretation,	and	
template.

BookstoreState
;; A BookstoreState is a
;; (make-bookstore-state Date Inventory)
(define-struct bookstore-state (date inventory))
;; A BookstoreState represents the state of a bookstore
;; on a given date.
;; -- date is the date being described
;; -- inventory is the inventory of books as of 9am on
;; the given date.

;; A Date is a ...

;; An Inventory is a ListOfBook, in ISBN order

7

Here's	where	we	specify	the	order	of	the	books.		
It	is	the	user of	the	list	who	gets	to	specify	the	

order	in	which	the	items	appear.		Other	
functions	that	use	ListOfBook might	expect	the	

books	in	some	other	order.	

If	you	don't	know	what	
an	ISBN	is,	go	look	it	up.

ListOfBook

;; A ListOfBook one of
;; -- empty
;; -- (cons Book ListOfBook)

8

Notice	that	the	data	definition	doesn't	
say	WHICH	list	of	books	this	is.		It	
could	be	all	the	books	in	the	
bookstore,	just	the	paperbacks,	the	
ones	that	have	been	ordered	in	the	
last	30	days,	etc.	etc.		In	a	
BookstoreState,	it	is	the	list	of	all	the	
books	in	stock	as	of	9am	on	the	given	
state.

Don't	need	a	
separate	

interpretation	for	
ListOfBook– a	
ListOfBook
always	

represents	a	
sequence	of	
books	in	the	
standard	way.

Also,	the	data	definition	doesn't	say	
in	which	order	the	books	appear	in	
the	list.			A	user	of	ListOfBook gets	
to	specify	the	order	in	which	the	
books	appear.		In	our	example,	

BookstoreState expects	the	books	
to	appear	in	ISBN	order.

Template	for	ListofBooks
;; A ListOfBooks (LOB) is either
;; -- empty
;; -- (cons Book LOB)

;; lob-fn : LOB -> ??
;; (define (lob-fn lob)
;; (cond
;; [(empty? lob) ...]
;; [else (...
;; (book-fn (first lob))
;; (lob-fn (rest lob)))]))

9

We've	inserted		a	call	to	a	function	
here.

(rest	lob)	is	a	LOB,	so	we	wrap	it	in	a	
lob-fn.

Similarly,	(first	lob)	is	a	Book,	so	we	
wrap	it	in	a	book-fn.

The	template	recipe,	updated
Question Answer

Does	the	data	definition	distinguish	
among	different	subclasses	of	data?

Your	template	needs	as	many	cond
clauses	as	subclasses	that	the	data	
definition	distinguishes.

How	do	the	subclasses	differ	from	each	
other?

Use	the	differences	to	formulate	a	
condition	per	clause.

Do	any	of	the	clauses	deal	with	structured	
values?

If	so,	add	appropriate	selector	expressions	
to	the	clause.

Does	the	data	definition	use	self-
references?

Formulate	``natural	recursions''	for	the	
template	to	represent	the	self-references	
of	the	data	definition.

Do	any	of	the	fields	contain	compound or	
mixed	data?

If	the	value	of	a	field	is	a	foo, add	a	call	to	
a	foo-fn to	use	it.

10

Observe	that	this	is	just	what	we	did	for	self-
references,	because	a	list	is	a	kind	of	mixed	data.	

Example:	if	book-fn is	just	a	selector,	
you	can	put	it	in	directly

;; books-authors : LOB -> ListOfString
;; STRATEGY: Use template for LOB on lob
(define (books-authors lob)

(cond
[(empty? lob) empty]
[else (cons

(book-author (first lob))
(books-authors (rest lob)))]))

11

book-author is	
certainly	a	book-fn!

Module	Summary:	Self-Referential	or	
Recursive	Information

• Represent	arbitrary-sized	information	using	a	
self-referential (or	recursive)	data	definition.

• Self-reference	in	the	data	definition	leads	to	
self-reference	in	the	template.

• Self-reference	in	the	template	leads	to	self-
reference	in	the	code.

• Writing	functions	on	this	kind	of	data	is	easy:	
just	Follow	The	Recipe!

• But	get	the	template	right!

12

Summary

• At	the	end	of	this	lesson	you	should	be	able	
to:
– write	down	a	template	for	lists	of	compound	data
– use	the	template	to	write	simple	functions	on	lists	
of	compound	data

• The	Guided	Practices	will	give	you	some	
exercise	in	doing	this.

13

Next	Steps

• Study	04-2-books.rkt	in	the	Examples	file
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	4.4
• Go	on	to	the	next	lesson

14

