
Using	the	List	Template

CS	5010	Program	Design	Paradigms	
Lesson	4.2

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Learning	Objectives

At	the	end	of	this	lesson	you	should	be	able	to:
• Write	down	the	template	for	list	data.
• Use	the	template	for	list	data	to	write	simple	
functions	on	lists.	

2

Review:	The	ListOfX Data	Definition

A ListOfX is one of
-- empty
-- (cons X ListOfX)

3

Here	is	the	data	definition	for	a	
list	of	X's

This	definition	is	self-referential.

A ListOfX is one of
-- empty
-- (cons X ListOfX)

4

Template	for	List	data

;; list-fn : ListOfX -> ??
(define (list-fn lst)
(cond
[(empty? lst) ...]
[else (... (first lst)

(list-fn (rest lst)))]))

5

Observe	that	lst is	non-empty	
when	first and	rest are	

called,	so	their	WHERE-clauses	
are	satisfied.

Here	is	the	template	for	list	data.	It	is	
just	like	a	template	for	mixed	data,	with	
one	change.	In	the	second	case,	we	get	
to	use	not	just	(rest	lst) but	(list-fn (rest	
lst)) .		This	important	change	is	shown	in	
red.		

This	template	is	self-referential

;; list-fn : ListOfX -> ??
(define (list-fn lst)
(cond
[(empty? lst) ...]
[else (... (first lst)

(list-fn (rest lst)))]))

6

New	Slogan:	Self-reference	in	the	
data	definition	leads	to	self-
reference	in	the	template.

(rest lst) is	a	
ListOfX,	so	call	
list-fn on	it

Let's	add	this	to	the	recipe	for	writing	
a	template

Question Answer

Does	the	data	definition	distinguish	
among	different	subclasses	of	data?

Your	template	needs	as	many	cond
clauses	as	subclasses	that	the	data	
definition	distinguishes.

How	do	the	subclasses	differ	from	each	
other?

Use	the	differences	to	formulate	a	
condition	per	clause.

Do	any	of	the	clauses	deal	with	structured	
values?

If	so,	add	appropriate	selector	expressions	
to	the	clause.

Does	the	data	definition	use	self-
references?

Formulate	``natural	recursions''	for	the	
template	to	represent	the	self-references	
of	the	data	definition.

7

We	got	the	list	template	by	following	the	
template	recipe	and	adding	one	more	step.

;; list-fn : ListOfX -> ??
(define (list-fn lst)
(cond
[]
[]))

;; list-fn : ListOfX -> ??
(define (list-fn lst)
(cond
[(empty? lst) ...]
[else ...]))

;; list-fn : ListOfX -> ??
(define (list-fn lst)
(cond
[(empty? lst) ...]
[else (... (first lst)

(rest lst))]))

;; list-fn : ListOfX -> ??
(define (list-fn lst)
(cond
[(empty? lst) ...]
[else (... (first lst)

(list-fn (rest lst))]))

Let's	see	how	the	four	steps	in	the	template	
recipe	show	up	in	the	list	template.

8

1.	Write	a	cond clause	with	the	correct	number	
of	clauses.
2.	Write	predicates	that	distinguish	the	cases.
3.	For	mixed	data,	add	selectors
4.	For	recursive	data,	add	a	recursive	call

1.	Write	a	cond clause	with	the	correct	number	
of	clauses.
2.	Write	predicates	that	distinguish	the	cases.
3.	For	mixed	data,	add	selectors
4.	For	recursive	data,	add	a	recursive	call

1.	Write	a	cond clause	with	the	correct	number	
of	clauses.
2.	Write	predicates	that	distinguish	the	cases.
3.	For	mixed	data,	add	selectors
4.	For	recursive	data,	add	a	recursive	call

1.	Write	a	cond clause	with	the	correct	number	
of	clauses.
2.	Write	predicates	that	distinguish	the	cases.
3.	For	mixed	data,	add	selectors
4.	For	recursive	data,	add	a	recursive	call

Observe	that	(cons	X	ListOfX)	was	
a	structured	value,	and	that	(first	
lst)	and	(rest	lst)	were	the	
appropriate	selector	expressions

From	Template	to	Function	Definition

• Remember	that	when	we	use	a	template,	all	
we	do	is	fill	in	the	blanks.

• For	each	blank,	we	had	a	question	to	answer:
– "What's	the	answer	for	a	red	light?"
– "What's	the	answer	for	a	yellow	light?"
– "What's	the	answer	for	a	green	light?"

• The	questions	are	the	same,	no	matter	what	
the	function	is.

9

Template	Questions	for	TLState

;; tls-fn : TLState -> ??
;(define (tls-fn tls)
; (cond
; [(string=? tls "red") ...]
; [(string=? tls "yellow") ...]
; [(string=? tls "green") ...]))

10

What's	the	answer	for	
"red"?

What's	the	answer	for	
"yellow"?

What's	the	answer	for	
"green"?

The	questions	are	the	same,	no	matter	
what	function	we	are	defining.

To	finish	the	function	definition,	all	we	
do	is	to	fill	in	the	blanks	with	the	

answers.

;; list-fn : ListOfX -> ??
(define (list-fn lst)
(cond
[(empty? lst) ...]
[else (... (first lst)

(list-fn (rest lst)))]))
Here	are	the	template	
questions	for	the	list	

template.

Template	questions	for	ListOfX

11

What's	the	answer	for	
the	empty	list?

If	we	knew	the	first	of	the	list,	and	
the	answer	for	the	rest	of	the	list,	
how	could	we	combine	them	to	get	

the	answer	for	the	whole	list?

Let’s	do	some	examples

• We’ll	be	working	with	the	list	template	a	lot,	
so	let’s	do	some	examples	to	illustrate	how	it	
goes.

• We’ll	do	5	examples,	starting	with	one	that’s	
very	simple	and	working	up	to	more	
complicated	ones.

12

Example	1:	lon-length
lon-length : ListOfNumber -> Number
GIVEN: a ListOfNumber
RETURNS: its length
EXAMPLES:
(lon-length empty) = 0
(lon-length (cons 11 empty)) = 1
(lon-length (cons 33 (cons 11 empty))) = 2
STRATEGY: Use template for ListOfNumber on lst

13

Example	1:	lon-length
lon-length : LON -> Number
Given a LON, find its length
(define (lon-length lst)
(cond
[(empty? lst) ...]
[else (... (first lst)

(lon-length (rest lst)))]))

14

We	start	by	copying	the	
template	and	changing		
list-fn to	lon-length.		

Example	1:	lon-length

15

What's	the	answer	for	
the	empty	list?

If	we	knew	the	first	of	the	list,	and	
the	answer	for	the	rest	of	the	list,	
how	could	we	combine	them	to	get	

the	answer	for	the	whole	list?

Next,	we	answer	
the	template	
questions.

lon-length : LON -> Number
Given a LON, find its length
(define (lon-length lst)
(cond
[(empty? lst) ...]
[else (... (first lst)

(lon-length (rest lst)))]))

Example	1:	lon-length
lon-length : LON -> Number
Given a LON, find its length
(define (lon-length lst)
(cond
[(empty? lst) 0]
[else (+ 1 (first lst)

(lon-length (rest lst)))]))

16

What's	the	answer	for	
the	empty	list?

If	we	knew	the	first	of	the	list,	and	
the	answer	for	the	rest	of	the	list,	
how	could	we	combine	them	to	get	

the	answer	for	the	whole	list?

Next,	we	answer	
the	template	
questions.

The	code	is	self-referential,	too
lon-length : LON -> Number
Given a LON, find its length
(define (lon-length lst)
(cond
[(empty? lst) 0]
[else (+ 1 (first lst)

(lon-length (rest lst)))]))

17

Self-reference	in	the	data	definition	leads	to	
self-reference	in	the	template;
Self-reference	in	the	template	leads	to	self-
reference	in	the	code.

Example	2:	lon-sum
lon-sum : LON -> Number
GIVEN: a list of numbers
RETURNS: the sum of the numbers in the list
EXAMPLES:
(lon-sum empty) = 0
(lon-sum (cons 11 empty)) = 11
(lon-sum (cons 33 (cons 11 empty))) = 44
(lon-sum (cons 10 (cons 20 (cons 3 empty)))) = 33
STRATEGY: Use template for LON on lst

18

Here's	another	example

Example	2:	lon-sum
lon-sum : LON -> Number
(define (lon-sum lst)
(cond
[(empty? lst) ...]
[else (... (first lst)

(lon-sum (rest lst)))]))

19

What's	the	answer	for	
the	empty	list?

If	we	knew	the	first	of	the	list,	and	
the	answer	for	the	rest	of	the	list,	
how	could	we	combine	them	to	get	

the	answer	for	the	whole	list?

Example	2:	lon-sum

20

What's	the	answer	for	
the	empty	list?

If	we	knew	the	first	of	the	list,	and	
the	answer	for	the	rest	of	the	list,	
how	could	we	combine	them	to	get	

the	answer	for	the	whole	list?

lon-sum : LON -> Number
(define (lon-sum lst)
(cond
[(empty? lst) 0]
[else (+ (first lst)

(lon-sum (rest lst)))]))

Watch	this	work:
(lon-sum (cons 11 (cons 22 (cons 33 empty))))
= (+ 11 (lon-sum (cons 22 (cons 33 empty))))
= (+ 11 (+ 22 (lon-sum (cons 33 empty))))
= (+ 11 (+ 22 (+ 33 (lon-sum empty))))
= (+ 11 (+ 22 (+ 33 0)))
= (+ 11 (+ 22 33))
= (+ 11 55)
= 66

21

Example	3:	double-all
double-all : LON -> LON
GIVEN: a LON,
RETURNS: a list just like the original, but

with each number doubled
EXAMPLES:
(double-all empty) = empty
(double-all (cons 11 empty))

= (cons 22 empty)
(double-all (cons 33 (cons 11 empty)))

= (cons 66 (cons 22 empty))
STRATEGY: Use template for LON on lst

22

Example	3:	double-all
double-all : LON -> LON
(define (double-all lst)

(cond
[(empty? lst) ...]
[else (... (first lst)

(double-all (rest lst)))]))

23

What's	the	answer	for	
the	empty	list?

If	we	knew	the	first	of	the	list,	and	
the	answer	for	the	rest	of	the	list,	
how	could	we	combine	them	to	get	

the	answer	for	the	whole	list?

Example	3:	double-all

24

What's	the	answer	for	
the	empty	list?

If	we	knew	the	first	of	the	list,	and	
the	answer	for	the	rest	of	the	list,	
how	could	we	combine	them	to	get	

the	answer	for	the	whole	list?

double-all : LON -> LON
(define (double-all lst)

(cond
[(empty? lst) empty]
[else (cons (* 2 (first lst))

(double-all (rest lst)))]))

Example	4:	remove-evens

• For	this	one,	we'll	need	to	specialize	to	
integers.

A ListOfIntegers (LOI) is one of
-- empty
-- (cons Integer LOI)

25

Example	4:	remove-evens
remove-evens : LOI -> LOI
GIVEN: a LOI,
RETURNS: a list just like the original, but with all the
even numbers removed

EXAMPLES:
(remove-evens empty) = empty
(remove-evens (cons 12 empty)) = empty
(define list-22-11-13-46-7
(cons 22 (cons 11 (cons 13 (cons 46 (cons 7 empty))))))

(remove-evens list-22-11-13-46-7)
= (cons 11 (cons 13 (cons 7 empty)))

STRATEGY: Use template for LOI on lst

26

Example	4:	remove-evens
remove-evens : LOI -> LOI
(define (remove-evens lst)

(cond
[(empty? lst) ...]
[else (... (first lst)

(remove-evens (rest lst)))]))

27

What's	the	answer	for	
the	empty	list?

If	we	knew	the	first	of	the	list,	and	
the	answer	for	the	rest	of	the	list,	
how	could	we	combine	them	to	get	

the	answer	for	the	whole	list?

remove-evens : LOI -> LOI
(define (remove-evens lst)
(cond
[(empty? lst) empty]
[else (if (even? (first lst))

(remove-evens (rest lst))
(cons (first lst)

(remove-evens (rest lst))))]))

Example	4:	remove-evens

28

What's	the	answer	for	
the	empty	list?

If	we	knew	the	first	of	the	list,	and	
the	answer	for	the	rest	of	the	list,	
how	could	we	combine	them	to	get	

the	answer	for	the	whole	list?

Example	4:	remove-evens
remove-evens : LOI -> LOI
(define (remove-evens lst)
(cond
[(empty? lst) empty]
[else (if (even? (first lst))

(remove-evens (rest lst))
(cons (first lst)

(remove-evens (rest lst))))]))

29

Observe	that	this	is	a	legal	functional	
combination	of	(first	lst)	and	(remove-evens	
(rest	lst)) .

Example	4:	remove-evens
remove-evens : LOI -> LOI
(define (remove-evens lst)
(cond
[(empty? lst) empty]
[(even? (first lst))
(remove-evens (rest lst))]
[else (cons (first lst)

(remove-evens (rest lst)))]))

30

This	version	is	OK,	too.		The	template	is	just	
a	way	for	you	to	get	started	writing	your	

function	definition.		It's	OK	to	vary	it	a	little	
if	it	leads	to	more	readable	code.

Example	5:	remove-first-even
remove-first-even : LOI -> LOI
GIVEN: a LOI,
RETURNS: a list just like the original, but with all the
even numbers removed

EXAMPLES:
(remove-first-even empty) = empty
(remove-first-even (cons 12 empty)) = empty
(define list-22-11-13-46-7
(cons 22 (cons 11 (cons 13 (cons 46 (cons 7 empty))))))

(remove-first-even list-22-11-13-46-7)
= (cons 11 (cons 13 (cons (cons 46 (cons 7 empty))))))

STRATEGY: Use template for LOI on lst

31

Why	is	this	not	a	good	set	of	
examples?

Answer:	None	of	them	show	what	happens	
when	the	first	element	of	the	list	is	odd

Example	5:	remove-first-even
remove-first-even : LOI -> LOI
(define (remove-first-even lst)
(cond
[(empty? lst) ...]
[else (... (first lst)

(remove-first-even (rest lst)))]))

32

What's	the	answer	for	
the	empty	list?

If	we	knew	the	first	of	the	list,	and	
the	answer	for	the	rest	of	the	list,	
how	could	we	combine	them	to	get	

the	answer	for	the	whole	list?

Example	5:	remove-first-even

33

remove-first-even : LOI -> LOI
(define (remove-first-even lst)
(cond
[(empty? lst) empty]
[else (... (first lst)

(remove-first-even (rest lst)))]))

If	we	knew	the	first	of	the	list,	and	
the	answer	for	the	rest	of	the	list,	
how	could	we	combine	them	to	get	

the	answer	for	the	whole	list?

Example	5:	remove-first-even

34

remove-first-even : LOI -> LOI
(define (remove-first-even lst)
(cond
[(empty? lst) empty]
[else (if (even? (first lst))

(rest lst)
(cons (first lst)

(remove-first-even (rest lst))))]))

This	is	OK:	you	don’t	
have	to	recur	if	you	

don’t	need	to.

Example	5:	remove-first-even

35

remove-first-even : LOI -> LOI
(define (remove-first-even lst)
(cond
[(empty? lst) empty]
[(even? (first lst))
(rest lst)]
[(cons (first lst)

(remove-first-even (rest lst)))]))

Again,	here's	another	version	of	
remove-first-even	that	is	acceptable.			
It's	OK	to	vary	the	template,	but	you'll	
be	less	likely	to	make	mistakes	if	you	

stick	close	to	the	template.

Summary

• You	should	now	be	able	to:
– write	down	the	template	for	a	list	data	definition
– use	structural	decomposition	to	define	simple	
functions	on	lists

36

Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	4.3
• Go	on	to	the	next	lesson

37

