
Lists

CS	5010	Program	Design	Paradigms
Lesson	4.1

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

How	to	represent	info	of	arbitrary	
size?

• a	phone	book	with	many	listings
• a	space-invaders	game	with	many	invaders
• a	presentation	with	many	slides

• Each	of	these	can	be	represented	as	a	sequence	
of	information	items.

• There	may	be	better	ways	for	some	of	these,	but	
we	will	start	with	sequences

• This	is	our	first	example	of	recursive	data

2

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Design	
Strategies

Combine	simpler	
functions

Use	a	template

Divide	into	Cases

Call	a	more	
general	function

Communicate	
via	State

Module	04

Outline	for	the	rest	of	this	week

• The	arithmetic	of	lists
• Using	the	list	template
• Lists	of	Structures

4

Learning	Objectives	for	this	Lesson
At	the	end	of	this	lesson,	you	should	be	able	to:	
• Write	down	a	data	definition	for	information	
represented	as	a	list

• Notate	lists	using	constructor,	list,	and	write	
notations.

• Explain	how	lists	are	represented	as	singly-linked	
data	structures,	and	how	cons,	first,	and	rest
work	on	these	structures

• Calculate	with	the	basic	operations	on	lists:	cons,	
first,	and	rest .	

5

Lists:	A	Handy	Representation	for	
Sequences

• Sequences	of	data	items	arise	so	often	that	most	
programming	languages	have	a	standard	way	of	
representing	them.

• Sequence	information	in	Racket	is	represented	by	
lists.

• We’ll	see	lots	of	examples:
– ListOfNumbers
– ListOfDigits
– ListOfStrings
– ListOfBooks

6

Lists	of	Numbers

A List of Numbers (LON) is one of:
-- empty
-- (cons Number LON)

7

List	data	is	a	kind	of	mixed	data.		Just	as	we	did	in	our	
previous	data	definitions,	the	data	definitions	for	lists	
shows	the	constructor	for	each	case.	
Here	we	have	two	constructors:	the	constant	empty
and	the	function	cons.		A	list	of	numbers	(or	"LON")	is	
either	empty or	the	value	built	by	applying	cons to	a	
number	and	another	LON.

There’s	no	
interpretation	here	
because	these	lists	
don’t	mean	anything	
(yet).		They	do	not	
refer	to	any	real-
world	information.

cons is	built	into	Racket.		
We	don’t	need	a	define-
structure	for	it.

Examples	of	LONs
empty

(cons 11 empty)
(cons 22 (cons 11 empty))

(cons 33 (cons 22 (cons 11 empty)))
(cons 33 empty)

8

A List of Numbers (LON) is
one of:
-- empty
-- (cons Number LON)

Here	are	some	examples	of	LONs.		

empty is	a	LON	by	the	data	definition.

(cons	11	empty) is	a	LON	because	11 is	a	number	and	
empty is	a	LON.		

(cons	22	(cons	11	empty)) is	a	LON	because	22 is	a	number	
and	(cons	11	empty) is	a	LON.
And	so	on.

Lists	of	Digits

A Digit is one of
"0" | "1" | "2" | ... | "9"

A List of Digits (LOD) is one of:
-- empty
-- (cons Digit LOD)

9

Let's	do	it	again,	this	time	with	digits.

We	define	a	Digit	to	be	one	of	the	
strings	"0",	"1",	etc.,	through	"9".	

A	List	of	Digits	(LOD)	is	either	empty	
or	the	cons	of	a	Digit	and	a	List	of	
Digits.

Examples	of	LODs
empty

(cons "3" empty)
(cons "2" (cons "3" empty))

(cons "4" (cons "2" (cons "3" empty)))
• These	are	not	LODs:
(cons 4 (cons "2" (cons "3" empty)))
(cons (cons "3" empty)

(cons "2" (cons "3" empty)))

10

A List of Digits (LOD) is one of:
-- empty
-- (cons Digit LOD)

Can	you	explain	why	each	of	the	first	4	
examples	are	LOD’s,	according	to	the	

data	definition?
Can	you	explain	why	the	last	two	are	

not	LODs?

Lists	of	Books

A Book is a (make-book ...) .

A List of Books (LOB) is one of:
-- empty
-- (cons Book LOB)

11

We	can	build	lists	of	more	complicated	data	items.		Imagine	
we	had	a	data	definition	for	Book.		Then	we	can	define	a	
List	of	Books	in	the	same	way	as	we	did	for	lists	of	numbers	
or	lists	of	digits:		a	List	of	Books	is	either	empty	or	the	cons	
of	a	Book	and	a	List	of	Books.

Examples	of	LOBs
(define book1 (make-book ...))
(define book2 (make-book ...))
(define book3 (make-book ...))

empty
(cons book1 empty)

(cons book2 (cons book1 empty))
(cons book2 (cons book2 (cons book1 empty))
• Not	a	LOB:

(cons 4 (cons book2 (cons book1 empty))

12

A List of Books (LOB) is one of:
-- empty
-- (cons Book LOB)

(Why?)

This	data	definition	is	self-referential

A List of Numbers (LON) is one of:
-- empty
-- (cons Number LON)

13

The	data	definition	for	LONs	contains	something	we	haven't	seen	before:	self-
reference.
The	second	constructor	uses	LON,	even	though	we	haven't	finished	defining	
LONs	yet.		That's	what	we	mean	by	self-reference.
In	normal	definitions,	this	would	be	a	problem:	you	wouldn’t	like	a	dictionary	
that	did	this.
But	self-reference	the	way	we've	used	it	is	OK.	We've	seen	in	the	examples	how	
this	works:		once	you	have	something	that	you	know	is	a	LON,		you	can	do	a	
cons	on	it	to	build	another	LON.		Since	that's	a	LON,	you	can	use	it	to	build	still	
another	LON.
We	also	call	this	a	recursive data	definition.

This	one	is	self-referential,	too

A Digit is one of
"0" | "1" | "2" | ... | "9"

A List of Digits (LOD) is one of:
-- empty
-- (cons Digit LOD)

14

How	Lists	Represent	Sequences
• If	X	is	some	data	definition,	we	define	a	list	of	X's	as	either	

empty	or	the	cons	of	an	X	and	a	list	of	X's.		
• So	a	list	of	sardines	is	either	empty or	the	cons of	a	sardine	

and	a	list	of	sardines.
• The	interpretation	is	always	"a	sequence	of	X's".

– empty represents	a	sequence	with	no	elements
– (cons	x	lst) represents	a	sequence	whose	first	element	is	x and	

whose	other	elements	are	represented	by	lst.
• If	we	had	some	information	that	we	wanted	to	represent	as	

a	list	of	X's	(say	a	list	of	people),	we	would	have	to	specify	
the	order	in	which	the	X's	appear	(say	"in	increasing	order	
of	height"),	or	else	say	“in	any	order.”

15

The	General	Pattern
A ListOfX is one of
-- empty

interp: a sequence of X's with no elements
-- (cons X ListOfX)

interp: (cons x lst) represents a sequence of X's
whose first element is x and whose
other elements are represented by lst.

16

List	Notation
• There	are	several	ways	to	write	down	lists.		
• We've	been	using	the	constructor	notation,	since	
that	is	the	most	important	one	for	use	in	data	
definitions.

• The	second	most	important	notation	we	will	use	
is	list	notation.	In	Racket,	you	can	get	your	output	
in	this	notation	by	choosing	the	language	
"Beginning	Student	with	List	Abbreviations".

• Internally,	lists	are	represented	as	singly-linked	
lists.	

• On	output,	lists	may	be	notated	in	write	notation.

17

Examples	of	List	Notation

18

11 22 33

Internal	representation:

(list 11 22 33)List	notation:

(cons 11
(cons 22

(cons 33
empty))))

Constructor	notation:

(11 22 33)write-style	(output	only):

Implementation	of	cons

19

22 33

lst

11

(cons 11 lst)

lst = (list 22 33)

(cons 11 lst) = (list 11 22 33)

Now	that	we've	seen	the	internal	
representation	of	lists,	we	can	see	how	
cons creates	a	new	list:	it	simply	adds	a	
new	node	to	the	front	of	the	list.		This	
operation	takes	a	short,	fixed	amount	
of	time.

Operations	on	Lists

empty? : ListOfX -> Boolean
Given a list, returns true iff the
list is empty

20

Racket	provides	3	functions	for	inspecting	
lists	and	taking	them	apart.		These	are	
empty?	,	first,	and	rest.

The	predicate	empty?	returns	true	if	and	
only	if	the	list	is	empty.

Operations	on	Lists

first : ListOfX -> X
GIVEN: a list
WHERE: the list is non-empty
RETURNS: its first element

21

When	we	write	down	the	
template	for	lists,	we	will	see	
that	when	we	call	first,	its	
argument	will	always	be	non-
empty.

Operations	on	Lists

rest : ListOfX -> ListOfX
GIVEN: a list
WHERE: the list is non-empty
RETURNS: the list of all its
elements except the first

22

When	we	write	down	the	
template	for	lists,	we	will	see	
that	when	we	call	rest,	its	
argument	will	always	be	non-
empty.

Examples
(empty? empty) = true
(empty? (cons 11 empty)) = false
(empty? (cons 22 (cons 11 empty))) = false

(first (cons 11 empty)) = 11
(rest (cons 11 empty)) = empty

(first (cons 22 (cons 11 empty))) = 22
(rest (cons 22 (cons 11 empty))) = (cons 11 empty)

(first empty) è Error! (Precondition failed)
(rest empty) è Error! (Precondition failed)

23

Implementation	of	first and rest

24

22 33

lst2

11

lst2 = (list 11 22 33)
(first lst2) = 11
(rest lst2) = (list 22 33)

(first lst2)

(rest lst2)

first and	rest simply	follow	
a	pointer	in	the	singly-
linked	data	structure.

Properties	of	cons,	first,	and	rest

(first (cons v l)) = v

(rest (cons v l)) = l
If	l is	non-empty,	then	
(cons (first l) (rest l)) = l

25

Here	are	some	useful	facts	about	
first,	rest,	and	cons.		Can	you	see	
why	they	are	true? These	facts	tell	us	that	if	we	want	to	build	a	

list	whose	first is	x and	whose rest is	lst,	we	
can	do	this	by	writing	(cons	x	lst).

Summary
At	this	point,	you	should	be	able	to:	
• Write	down	a	data	definition	for	information	
represented	as	a	list

• Notate	lists	using	constructor,	list,	and	write	
notations.

• Explain	how	lists	are	represented	as	singly-linked	
data	structures,	and	how	cons,	first,	and	rest
work	on	these	structures

• Calculate	with	the	basic	operations	on	lists:	cons,	
first,	and	rest .	

26

Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practices	4.1	and	4.2
• Go	on	to	the	next	lesson

27

