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How	to	represent	info	of	arbitrary	
size?

• a	phone	book	with	many	listings
• a	space-invaders	game	with	many	invaders
• a	presentation	with	many	slides

• Each	of	these	can	be	represented	as	a	sequence	
of	information	items.

• There	may	be	better	ways	for	some	of	these,	but	
we	will	start	with	sequences

• This	is	our	first	example	of	recursive	data
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Outline	for	the	rest	of	this	week

• The	arithmetic	of	lists
• Using	the	list	template
• Lists	of	Structures
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Learning	Objectives	for	this	Lesson
At	the	end	of	this	lesson,	you	should	be	able	to:	
• Write	down	a	data	definition	for	information	
represented	as	a	list

• Notate	lists	using	constructor,	list,	and	write	
notations.

• Explain	how	lists	are	represented	as	singly-linked	
data	structures,	and	how	cons,	first,	and	rest
work	on	these	structures

• Calculate	with	the	basic	operations	on	lists:	cons,	
first,	and	rest .	
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Lists:	A	Handy	Representation	for	
Sequences

• Sequences	of	data	items	arise	so	often	that	most	
programming	languages	have	a	standard	way	of	
representing	them.

• Sequence	information	in	Racket	is	represented	by	
lists.

• We’ll	see	lots	of	examples:
– ListOfNumbers
– ListOfDigits
– ListOfStrings
– ListOfBooks
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Lists	of	Numbers

A List of Numbers (LON) is one of:
-- empty
-- (cons Number LON)
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List	data	is	a	kind	of	mixed	data.		Just	as	we	did	in	our	
previous	data	definitions,	the	data	definitions	for	lists	
shows	the	constructor	for	each	case.	
Here	we	have	two	constructors:	the	constant	empty
and	the	function	cons.		A	list	of	numbers	(or	"LON")	is	
either	empty or	the	value	built	by	applying	cons to	a	
number	and	another	LON.

There’s	no	
interpretation	here	
because	these	lists	
don’t	mean	anything	
(yet).		They	do	not	
refer	to	any	real-
world	information.

cons is	built	into	Racket.		
We	don’t	need	a	define-
structure	for	it.



Examples	of	LONs
empty

(cons 11 empty)
(cons 22 (cons 11 empty))

(cons 33 (cons 22 (cons 11 empty)))
(cons 33 empty)
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A List of Numbers (LON) is 
one of:
-- empty
-- (cons Number LON)

Here	are	some	examples	of	LONs.		

empty is	a	LON	by	the	data	definition.

(cons	11	empty) is	a	LON	because	11 is	a	number	and	
empty is	a	LON.		

(cons	22	(cons	11	empty)) is	a	LON	because	22 is	a	number	
and	(cons	11	empty) is	a	LON.
And	so	on.



Lists	of	Digits

A Digit is one of
"0" | "1" | "2" | ... | "9"

A List of Digits (LOD) is one of:
-- empty
-- (cons Digit LOD)
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Let's	do	it	again,	this	time	with	digits.

We	define	a	Digit	to	be	one	of	the	
strings	"0",	"1",	etc.,	through	"9".	

A	List	of	Digits	(LOD)	is	either	empty	
or	the	cons	of	a	Digit	and	a	List	of	
Digits.



Examples	of	LODs
empty

(cons "3" empty)
(cons "2" (cons "3" empty))

(cons "4" (cons "2" (cons "3" empty)))
• These	are	not	LODs:
(cons 4 (cons "2" (cons "3" empty)))
(cons (cons "3" empty)  

(cons "2" (cons "3" empty)))
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A List of Digits (LOD) is one of:
-- empty
-- (cons Digit LOD)

Can	you	explain	why	each	of	the	first	4	
examples	are	LOD’s,	according	to	the	

data	definition?
Can	you	explain	why	the	last	two	are	

not	LODs?



Lists	of	Books

A Book is a (make-book ...) .

A List of Books (LOB) is one of:
-- empty
-- (cons Book LOB)
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We	can	build	lists	of	more	complicated	data	items.		Imagine	
we	had	a	data	definition	for	Book.		Then	we	can	define	a	
List	of	Books	in	the	same	way	as	we	did	for	lists	of	numbers	
or	lists	of	digits:		a	List	of	Books	is	either	empty	or	the	cons	
of	a	Book	and	a	List	of	Books.



Examples	of	LOBs
(define book1 (make-book ...))
(define book2 (make-book ...))
(define book3 (make-book ...))  

empty
(cons book1 empty)

(cons book2 (cons book1 empty))
(cons book2 (cons book2 (cons book1 empty))
• Not	a	LOB:

(cons 4 (cons book2 (cons book1 empty))
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A List of Books (LOB) is one of:
-- empty
-- (cons Book LOB)

(Why?)



This	data	definition	is	self-referential

A List of Numbers (LON) is one of:
-- empty
-- (cons Number LON)
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The	data	definition	for	LONs	contains	something	we	haven't	seen	before:	self-
reference.
The	second	constructor	uses	LON,	even	though	we	haven't	finished	defining	
LONs	yet.		That's	what	we	mean	by	self-reference.
In	normal	definitions,	this	would	be	a	problem:	you	wouldn’t	like	a	dictionary	
that	did	this.
But	self-reference	the	way	we've	used	it	is	OK.	We've	seen	in	the	examples	how	
this	works:		once	you	have	something	that	you	know	is	a	LON,		you	can	do	a	
cons	on	it	to	build	another	LON.		Since	that's	a	LON,	you	can	use	it	to	build	still	
another	LON.
We	also	call	this	a	recursive data	definition.



This	one	is	self-referential,	too

A Digit is one of
"0" | "1" | "2" | ... | "9"

A List of Digits (LOD) is one of:
-- empty
-- (cons Digit LOD)
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How	Lists	Represent	Sequences
• If	X	is	some	data	definition,	we	define	a	list	of	X's	as	either	

empty	or	the	cons	of	an	X	and	a	list	of	X's.		
• So	a	list	of	sardines	is	either	empty or	the	cons of	a	sardine	

and	a	list	of	sardines.
• The	interpretation	is	always	"a	sequence	of	X's".

– empty represents	a	sequence	with	no	elements
– (cons	x	lst) represents	a	sequence	whose	first	element	is	x and	

whose	other	elements	are	represented	by	lst.
• If	we	had	some	information	that	we	wanted	to	represent	as	

a	list	of	X's	(say	a	list	of	people),	we	would	have	to	specify	
the	order	in	which	the	X's	appear	(say	"in	increasing	order	
of	height"),	or	else	say	“in	any	order.”
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The	General	Pattern
A ListOfX is one of
-- empty   

interp: a sequence of X's with no elements
-- (cons X ListOfX)

interp: (cons x lst) represents a sequence of X's
whose first element is x and whose
other elements are represented by lst.
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List	Notation
• There	are	several	ways	to	write	down	lists.		
• We've	been	using	the	constructor	notation,	since	
that	is	the	most	important	one	for	use	in	data	
definitions.

• The	second	most	important	notation	we	will	use	
is	list	notation.	In	Racket,	you	can	get	your	output	
in	this	notation	by	choosing	the	language	
"Beginning	Student	with	List	Abbreviations".

• Internally,	lists	are	represented	as	singly-linked	
lists.	

• On	output,	lists	may	be	notated	in	write	notation.
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Examples	of	List	Notation
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11 22 33

Internal	representation:

(list 11 22 33)List	notation:

(cons 11
(cons 22

(cons 33
empty))))

Constructor	notation:

(11 22 33)write-style	(output	only):



Implementation	of	cons
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22 33

lst

11

(cons 11 lst)

lst =    (list 22 33)

(cons 11 lst) = (list 11 22 33)

Now	that	we've	seen	the	internal	
representation	of	lists,	we	can	see	how	
cons creates	a	new	list:	it	simply	adds	a	
new	node	to	the	front	of	the	list.		This	
operation	takes	a	short,	fixed	amount	
of	time.



Operations	on	Lists

empty? : ListOfX -> Boolean
Given a list, returns true iff the 
list is empty

20

Racket	provides	3	functions	for	inspecting	
lists	and	taking	them	apart.		These	are	
empty?	,	first,	and	rest.

The	predicate	empty?	returns	true	if	and	
only	if	the	list	is	empty.



Operations	on	Lists

first : ListOfX -> X
GIVEN: a list
WHERE: the list is non-empty
RETURNS: its first element
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When	we	write	down	the	
template	for	lists,	we	will	see	
that	when	we	call	first,	its	
argument	will	always	be	non-
empty.



Operations	on	Lists

rest : ListOfX -> ListOfX
GIVEN: a list
WHERE: the list is non-empty
RETURNS: the list of all its 
elements except the first
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When	we	write	down	the	
template	for	lists,	we	will	see	
that	when	we	call	rest,	its	
argument	will	always	be	non-
empty.



Examples
(empty?                   empty)   = true
(empty?          (cons 11 empty))  = false
(empty? (cons 22 (cons 11 empty))) = false

(first (cons 11 empty)) = 11
(rest  (cons 11 empty)) = empty

(first (cons 22 (cons 11 empty))) = 22
(rest  (cons 22 (cons 11 empty))) = (cons 11 empty)

(first empty)  è Error! (Precondition failed)
(rest  empty)  è Error! (Precondition failed)
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Implementation	of	first and rest
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22 33

lst2

11

lst2  = (list 11 22 33)
(first lst2) = 11
(rest  lst2) = (list 22 33)

(first lst2)

(rest lst2)

first and	rest simply	follow	
a	pointer	in	the	singly-
linked	data	structure.



Properties	of	cons,	first,	and	rest

(first (cons v l)) = v

(rest (cons v l)) = l
If	l is	non-empty,	then	
(cons (first l) (rest l)) = l
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Here	are	some	useful	facts	about	
first,	rest,	and	cons.		Can	you	see	
why	they	are	true? These	facts	tell	us	that	if	we	want	to	build	a	

list	whose	first is	x and	whose rest is	lst,	we	
can	do	this	by	writing	(cons	x	lst).



Summary
At	this	point,	you	should	be	able	to:	
• Write	down	a	data	definition	for	information	
represented	as	a	list

• Notate	lists	using	constructor,	list,	and	write	
notations.

• Explain	how	lists	are	represented	as	singly-linked	
data	structures,	and	how	cons,	first,	and	rest
work	on	these	structures

• Calculate	with	the	basic	operations	on	lists:	cons,	
first,	and	rest .	
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Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practices	4.1	and	4.2
• Go	on	to	the	next	lesson
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