
Two	Draggable Cats

CS	5010	Program	Design	Paradigms
Lesson	3.4

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction	and	Learning	Objectives

• In	this	lesson,	you	will	learn	how	to	build	more	
complicated	worlds	with	more	than	one	
object.

• By	the	end	of	this	lesson	you	should	be	able	to
–Write	more	complex	data	definitions,	representing	
information	in	appropriate	places.

– Use	templates	to	guide	the	development	of	
programs	incorporating	multiple	data	definitions.

Requirements

• Like	draggable-cat,	except:
• We	have	2	cats	in	the	scene
• Each	cat	can	be	individually	selected,	as	in	
draggable-cat

• Space	pauses	or	unpauses the	entire	
animation

• Demo:	two-draggable-cats:	
http://www.youtube.com/watch?v=XvODwv7ivrA

two-draggable-cats:	demo

Note:	I've	added	a	bunch	of	tests	since	this	video	was	made.		Study	them!

YouTube	link

• https://www.youtube.com/watch?v=XvODwv7ivrA

Information	Analysis

• The	world	has	two	cats	and	a	paused?
– it	is	the	whole	world	that	is	paused	or	not

Data	Definitions:	World
(define-struct world (cat1 cat2 paused?))
;; A World is a (make-world Cat Cat Boolean)
;; cat1 and cat2 are the two cats
;; paused? describes whether or not the world
;; is paused

;; template:
;; world-fn : World -> ??
;; (define (world-fn w)
;; (... (world-cat1 w)
;; (world-cat2 w)
;; (world-paused? w)))

Information	Analysis

• Each	cat	has	x-pos,	y-pos,	and	selected?
• What	about	paused?
– cats	aren't	individually	paused
– it's	the	whole	thing	that	is	paused	or	not.

Data	Definitions:	Cat
(define-struct cat (x-pos y-pos selected?))
;; A Cat is a
;; (make-cat Integer Integer Boolean)
;; Interpretation:
;; x-pos, y-pos give the position of the cat.
;; selected? describes whether or not the cat is
;; selected.

;; template:
;; cat-fn : Cat -> ??
;(define (cat-fn c)
; (... (cat-x-pos w)
; (cat-y-pos w)
; (cat-selected? w)))

Data	Design	Principles

• Every	value	of	the	information	should	be	
represented	by	some	value	of	the	data
– otherwise,	we	lose	immediately!

• Every	value	of	the	data	should	represent	some	
value	of	the	information
– no	meaningless	or	nonsensical	combinations
– if	each	cat	had	a	paused?	field,	then	what	does	it	
mean	for	one	cat	to	be	paused	and	the	other	not?

– Is	it	possible	for	one	cat	to	be	paused	and	the	other	
not?

Follow	the	template!

• If	your	world	has	some	cats	in	it,	then	your	
world	function	will	just	call	a	cat	function	on	
each	cat.

• The	structure	of	your	program	will	follow	the	
structure	of	your	data	definitions.

• Let's	watch	this	at	work:

world-after-tick
;; world-after-tick : World -> World
;; RETURNS: the world that should follow the
;; given world after a tick
;; STRATEGY: Use template for World on w

(define (world-after-tick w)
(if (world-paused? w)

w
(make-world

(cat-after-tick (world-cat1 w))
(cat-after-tick (world-cat2 w))
false)))

(world-cat1	w)	is	a	cat,	so	
we	just	call	a	cat	function	

on	it

cat-after-tick
;; cat-after-tick : Cat -> Cat
;; RETURNS: the state of the given cat after a tick in an
;; unpaused world.

;; EXAMPLES:
;; cat selected
;; (cat-after-tick selected-cat-at-20) = selected-cat-at-20
;; cat paused:
;; (cat-after-tick unselected-cat-at-20) = unselected-cat-at-28

;; STRATEGY: Use template for Cat on c

;; function definition on next slide

cat-after-tick	definition
(define (cat-after-tick c)

(if (cat-selected? c)
c
(make-cat

(cat-x-pos c)
(+ (cat-y-pos c) CATSPEED)
(cat-selected? c))))

world-to-scene

• world-to-scene	follows	the	same	pattern:		the	
world	consists	of	two	cats,	so	we	call	two	cat	
functions.

• Both	cats	have	to	appear	in	the	same	scene,	
so	we	will	have	to	be	a	little	clever	about	our	
cat	function.

world-to-scene
;; world-to-scene : World -> Scene
;; RETURNS: a Scene that portrays the
;; given world.
;; STRATEGY: Use template for World on w
(define (world-to-scene w)

(place-cat
(world-cat1 w)
(place-cat

(world-cat2 w)
EMPTY-CANVAS)))

The	pieces	are	cats,	so	
create	a	wishlist

function	to	place	a	cat	
on	a	scene	

place-cat
;; place-cat : Cat Scene -> Scene
;; returns a scene like the given one, but with
;; the given cat painted on it.
;; strategy : Use template for Cat on c
(define (place-cat c s)

(place-image
CAT-IMAGE
(cat-x-pos c) (cat-y-pos c)
s))

The	Structure	of	the	Program	Follows	
the	Structure	of	the	Data	(1)

• Let's	look	again	at	the	structure	of	our	
program.

• If	we	draw	the	call	graph	of	our	program	
(showing	which	functions	call	which),	we	can	
see	that	the	call	graph	mirrors	the	structure	of	
the	data

• The	world	contains	two	cats,	so	world-after-
tick	calls	cat-after-tick	(twice).

• Let'	draw	some	pictures:

17

The	Structure	of	the	Program	Follows	
the	Structure	of	the	Data	(2)

18

World

Cat

world-after-
tick

cat-after-tick

world-to-scene

place-cat

world-after-
mouse-event

cat-after-
mouse-event

Data	Definitions Call	Graphs

The	Structure	of	the	Program	Follows	
the	Structure	of	the	Data	(3)

19

World

Cat

world-after-
mouse-event

cat-after-
mouse-event

Mouse	Event

“button-down”

“button-up”

“drag”

cat-after-
button-down

cat-after-
button-up cat-after-drag

Call	Graph

Data	Definitions

The	arcs	indicate	an	"or"	
relationship

What	if	there	were	more	things	in	the	
world?

20

Data	Definitions Call	Graph

World

Cat Traffic	Light

world-after-
tick

cat-after-tick traffic-light-
after-tick

What	if	the	motion	of	the	cat	were	
more	complicated?

• In	our	problem,	the	components	of	the	new	cat	
were	all	"one-liners"

• If	the	motion	of	the	cat	were	more	complicated,	
you	might	need	to	do	some	complicated	
computation	to	determine	the	next	x,y position	
and	next	x,y velocities	of	the	cat.

• You'd	turn	some	or	all	of	these	into	help	
functions.

• This	still	still winds	up	following	the	structure	of	
the	data:

21

What	if	the	motion	of	the	cat	were	
more	complicated?	(2)

22

Data	Definitions

Call	Graph

World

Cat Traffic	Light

world-after-
tick

cat-after-tick traffic-light-
after-tick

x-pos
y-pos
x-vel
y-vel
selected?

cat-x-pos-after-
tick

cat-x-vel-after-
tick

cat-y-vel-after-
tick

cat-selected?-
after-tick

cat-y-pos-
after-tick

You	may	not	need	all	of	
these	help	functions	if	
some	of	the	components	
of	the	cat	after	the	tick	are	
one-liners.

Summary

• In	this	lesson,	you	had	the	opportunity	to
– Build	a	more	complex	world
–Write	more	complex	data	definitions,	representing	
information	in	appropriate	places.

– Use	the	structure	of	the	data	to	guide	the	
development	of	programs	incorporating	multiple	
data	definitions	("the	structure	of	the	program	
follows	the	structure	of	the	data").

Next	Steps

• Run	two-draggable-cats.rkt and	study	the	
code	(including	the	tests!)

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

