Dealing with Conflicting Updates
In Git

CS 5010 Program Design Paradigms
Lesson 0.6

@ © Mitchell Wand, 2012-2014
e 1 his work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Learning Objectives

e At the end of this lesson you should be able
to:

— explain what happens when you pull changes
from an upstream repository

— understand what a conflict is

— resolve a simple merge conflict in a text file
(including a .rkt file)

A Commit

commit

Remember the
basic story from
the preceding
lesson

When you do a “commit”, you
record all your local changes into
the mini-fs.

The mini-fs is “append-only”.
Nothing is ever over-written
there, so everything you ever
commit can be recovered.

Synchronizing with the server (1)

E

K

your local machine

_ <
user_docs.aocx

a server, somewhere on the
internet, eg. github.com

push >

At the end of each work session, you need
to save your changes on the server. This is
called a “push”.

Now all your data is backed up.

* You can retrieve it, on your machine or
some other machine.

* We can retrieve it (that’s how we collect
homework)

Synchronizing with the server (2)

a server, somewhere on the
internet, eg. github.com

your local machine

/-ﬁ ==

my-project -< manual.docx
user_r'

To retrieve your data from the server, you
do a “pull”. A “pull” takes the data from the
server and puts it both in your local mini-fs
and in your ordinary files.

the changes if possible. If it can’t figure out
how to the merge, you will get an error

message. Dealingwith-thisisbeyond-the
6eepe—ef—t—his—'eu$e#al—® .

J

Q: When might you need to merge?

A: When your partner committed some changes
to the server, which you don't have.

Your partner's Your work (on
work (on the your local
server) machine)

Your last pull

Result of Syncing

Your changes are applied to the Combined work now lives
latest version on the server. on both the server and
This is called "rebasing" your local machine.
Your partner's Your work (on
work (on the your local
server) machine)

Most of the time, this works well

* So long as you and your partner are working
on separate parts of the file, this works fine.

* Both sets of changes get made, and the
history on the server stays linear.

* But what happens if you and your partner
commit incompatible changes?

Here's what you'll see

a
X

mwand g B

You might need to open a shell and debug the state of this repo.

OPEN SHELL

So, click on tools and open a shell

't

MINGW32;~/Desktop/cs5010-test-repo-1 u =
-/Desktop/cs* 00 L e B N

git merge
rror: ’‘merge’ is not Rgss1ble because you have unmerged files.
int: Fix them up 1n LA work tree.

int: and then use ’‘git add/rm <file>’ as

int: approprlate to mark resolutlon and make a commit,

int: or use ’git commit —3’.

atal: Exiting because of an unresolved conflict.

and@"ITCH"HP"ZQII "/Desktopr/esSiiB-test—ropo-1 <(<(ed7ht84. .. 7 |REBRSE 117

Eand@l‘llTCﬂ HP-2811 “/Desktop/csSBiB-test—repo—1 <<ed47h684...> IREBASE 1/1>

it status
EAD detached at e4?h684 . . - Here's what

L] L] 3

(Fix confh.cts and then'run M —cgntmue") we're going to

Cuse "g1t rebase —abort" to check out the original branchd do

Unmerged paths:
Cuse “git reset HEAD {file>..." to unstage)
(use "git add <file>..." to mark resolution?

both modlfxed: test2.rkt
o changes added to commit (use ‘“git add" and/or “git commit —-a'"

Don't panic!
First, look at the file in
an editor

10

£ testarkt E=FENT)

File Edit Options Buffers Tools Index Scheme Help

33 This is a sample file to demonstrate how git resolves conflicts -~

(define (fcnl x) —1
33 now I've filled in the definition I was supposed to do I
)

<<<<<<< HEAD

change made by my partner
change made by my partner
change made by my partner
change made by my partner

;3 Here is
;3 Here is
;3 Here is
;3 Here is

;3 Here are some changes made by me.
33 Here are some changes made by me.
;3 Here are some changes made by me.
33 Here are some changes made by me.

QO o o Q@

Here's what
the
conflicted
file looks like
(in emacs)

>>>>>>> I made some changes

(define (fcn2 x)
33 ... my partner has filled in the definition here

--\--- test2.rkt All (6,0) (Scheme Fill)--12:49PM 0.62
File reverted: c:/Users/wand/Desktop/cs5@1@-test-repo-1/test2.rkt

11

9 testarkt =)

File Edit Options Buffers Tools Index Scheme Help

-

2

This is a sample file to demonstrate how git resolves conflicts

(define (fcnl x)

)

2
..
22
..
22
..
2
2
22
.

22
..
22
..
2

22

33 now I've filled in the definition I was supposed to do

My partner made some changes. I'll keep some of them and remove
the rest:

git recognizes that I've fixed things up because those nasty
>>>>'s, etc. are gone.

Here is a change made by my partner
Here is a change made by my partner

; My partner's work made some of my changes unnecessary, so I'll

remove those and keep the good ones.

Here are some changes made by me.
Here are some changes made by me.

(define (fcn2 x)

--\--- test2.rkt All (12,25) (Scheme Fill)--12:52PM @.39

33 ... my partner has filled in the definition here

)

Wrote c:/Users/wand/Desktop/cs5010-test-repo-1/test2.rkt

Next: edit
the file the
way you
want it

12

7

5
- MINGW32:~/Desktop/cs5010-test-repo-1 [=] = I&J

pand@MITCH-HP-20811 “/Desktop/cs5810-test—repo—1 ({e4?7h684...> I REBASE 1/1)>
git merge

rror: ‘merge’ is not possible bhecause you have unmerged files.

int: Fix them up in the work tree.

int: and then use ’git add/rm <file?>’ as

int: appropriate to mark resolution and make a commit.

int: or use ’‘git commit —-a’.

atal: Exiting because of an unresolved conflict.

wand@MITCH-HP-20811 “/Desktop/cs5810-test—repo—1 ({e47h684...> IREBASE 1/1>
git status
HEAD detached at e47h684
You are currently rebasing branch ’master’ on ’‘ed4?h684’.
(fix conflicts and then run "“git rebase ——continue'’)
Cuse "git rebase ——skip" to skip this patch)
Cuse ""git rebase —abort' to check out the original branch>

m

Unmerged paths:
Cuse "git reset HEAD <file>..." to unstage)
Cuse "git add <file>..." to mark resolution>
both modified: test2.rkt
o changes added to commit fuse ""git add" and/or ""git commit —a')

+and@PMITCH-HP-2011 “/Des

git add test2.rkt , add the fixed-up file to the commit
lqanQGMITCH—HP—Zﬁii “/Desktow/cs ; ; -
% git rebase ——continue tell git to continue to the next change
pplying: I made some changes
Fand@MITCH-HP-20811 ~“/Desktop/cs501@-test—repo—1 (master)
6 git status
3n brgnch ﬂasterh o -
our branch is ahead of ’origin/master’ by commit
Cuse "git push' to publish your local commits? Ok' we are ready to sync
nothing to commit, working directory clean

wand@MITCH-HP-2011 “/Desktop/cs5@18-test—repo—1 {(master) ; ;
® if there were more conflicts,

we'd have to do this process
for each of them.

And we're ready to get back to work

mwand
CS50lOflS/CSSOlO-teSt-repO-1 ¢ master #* tools DG OUT R -0

no uncommitted changes

-

no local changes istory

Mitch at HP laptop 2011

open this repository in Explorer?
open thist R I made some changes =
Mitchell Wand Toda
My partner made some changes y
Mitch at HP laptop 2011
R Ll in the definition of fcnl Aug 25
Mitchell Wand
R Partner defines fcn2 D
Observe that both Mitch at HP laptop 2011 N
ug 25
. . I created test2.rkt
CommItS are now iIn Mitch at HP laptop 2011 Aug 23
. added testfilel 19
your history Mitchell Wand .
Update README “
Mitch
g Added README L
Mitch
g Initial commit Lol

s this a pain?

* Yes, but it shouldn't happen too often.

* Your interaction with the shell might look
somewhat different.

e But the workflow is the same:

— identify the files that are conflicted

— identify and resolve the conflicts in each file
* the conflicted region will be marked with >>>'s.
e Use your favorite text editor for this.

— When you get the file the way you want it, add it to
your commit.

— Commit all the fixed-up files.

15

Summary

* |n this lesson you have learned

— what happens when you pull changes from an
upstream repository

— what a conflict is

— how to resolve a simple merge conflict in a text
file (including a .rkt file)

16

