
Dealing	with	Conflicting	Updates	
in	Git

CS	5010	Program	Design	Paradigms
Lesson	0.6

©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License. 1



Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– explain	what	happens	when	you	pull	changes	
from	an	upstream	repository

– understand	what	a	conflict	is
– resolve	a	simple	merge	conflict	in	a	text	file	
(including	a	.rkt file)

2



A	Commit

my-project docs manual.docx

user_docs.docx

src
main.rkt

module1.rkt

module2.rkt

module3.rkt

.git

commit

When	you	do	a	“commit”,	you	
record	all	your	local	changes	into	
the	mini-fs.

The	mini-fs is	“append-only”.		
Nothing	is	ever	over-written	
there,	so	everything	you	ever	
commit	can	be	recovered.

Remember	the	
basic	story	from	
the	preceding	

lesson	

3



Synchronizing	with	the	server	(1)

my-project docs manual.docx

user_docs.docx

src
main.rkt

module1.rkt

module2.rkt

module3.rkt

.git push

At	the	end	of	each	work	session,	you	need	
to	save	your	changes	on	the	server.		This	is	
called	a	“push”.

Now	all	your	data	is	backed	up.
• You	can	retrieve	it,	on	your	machine	or	

some	other	machine.
• We	can	retrieve	it	(that’s	how	we	collect	

homework)

your	local	machine a	server,	somewhere	on	the	
internet,	eg.	github.com

4



Synchronizing	with	the	server	(2)

my-project docs manual.docx

user_docs.docx

src
main.rkt

module1.rkt

module2.rkt

module3.rkt

.git pull

To	retrieve	your	data	from	the	server,	you	
do	a	“pull”.		A	“pull”	takes	the	data	from	the	
server	and	puts	it	both	in	your	local	mini-fs
and	in	your	ordinary	files.

If	your	local	file	has	changed,	git will	merge	
the	changes	if	possible.		If	it	can’t	figure	out	
how	to	the	merge,	you	will	get	an	error	
message.		Dealing	with	this	is	beyond	the	
scope	of	this	tutorial	L

your	local	machine a	server,	somewhere	on	the	
internet,	eg.	github.com

pu
ll

5



Q:	When	might	you	need	to	merge?

A:	When	your	partner	committed	some	changes	
to	the	server,		which	you	don't	have.

Your	partner's	
work	(on	the	

server)

Your	work	(on	
your	local	
machine)

Your	last	pull

6



Result	of	Syncing

Your	partner's	
work	(on	the	

server)

Your	work	(on	
your	local	
machine)

Your	changes	are	applied	to	the	
latest	version	on	the	server.		
This	is	called	"rebasing"

Combined	work	now	lives	
on	both	the	server	and	
your	local	machine.

7



Most	of	the	time,	this	works	well

• So	long	as	you	and	your	partner	are	working	
on	separate	parts	of	the	file,	this	works	fine.

• Both	sets	of	changes	get	made,	and	the	
history	on	the	server	stays	linear.

• But	what	happens	if	you	and	your	partner	
commit	incompatible	changes?

8



Here's	what	you'll	see

9



So,	click	on	tools	and	open	a	shell

Don't	panic!
First,	look	at	the	file	in	

an	editor

Here's	what	
we're	going	to	

do

10



Here's	what	
the	

conflicted	
file	looks	like	
(in	emacs)

what's	on	the	server

what's	on	the	local	machine

11



Next:	edit	
the	file	the	
way	you	
want	it

no	more	>>>'s

12



add	the	fixed-up	file	to	the	commit

tell	git to	continue	to	the	next	change

ok!	we	are	ready	to	sync

if	there	were	more	conflicts,	
we'd	have	to	do	this	process	

for	each	of	them. 13



And	we're	ready	to	get	back	to	work

Observe	that	both	
commits	are	now	in	

your	history

14



Is	this	a	pain?
• Yes,	but	it	shouldn't	happen	too	often.
• Your	interaction	with	the	shell	might	look	
somewhat	different.

• But	the	workflow	is	the	same:
– identify	the	files	that	are	conflicted
– identify	and	resolve	the	conflicts	in	each	file

• the	conflicted	region	will	be	marked	with	>>>'s.
• Use	your	favorite	text	editor	for	this.

– When	you	get	the	file	the	way	you	want	it,	add	it	to	
your	commit.

– Commit	all	the	fixed-up	files.

15



Summary

• In	this	lesson	you	have	learned
– what	happens	when	you	pull	changes	from	an	
upstream	repository

– what	a	conflict	is
– how	to	resolve	a	simple	merge	conflict	in	a	text	
file	(including	a	.rkt file)

16


