
A	Simple	Introduction	to	Git:	a	
distributed	version-control	system

CS	5010	Program	Design	Paradigms
Lesson	0.5

©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License. 1



Learning	Objectives

• At	the	end	of	this	lesson	you		should	be	able	
to	explain:
– how	git creates	a	mini-filesystem in	your	directory
– what	commit,	push,	pull,	and	sync	do
– the	elements	of	the	basic	git workflow
– how	git allows	you	to	work	across	multiple	
computers

– how	git allows	you	and	a	partner	to	work	together

2



Git is	a	distributed version-control	
system

• You	keep	your	files	in	a	repository on	your	local	
machine.

• You	synchronize	your	repository	with	a	repository	
on	a	server.

• If	you	move	from	one	machine	to	another,	you	
can	pick	up	the	changes	by	synchronizing	with	
the	server.

• If	your	partner	uploads	some	changes	to	your	
files,	you	can	pick	those	up	by	synchronizing	with	
the	server.

3



Git is	a	distributed	version-control
system

• Terminology:		In	git-speak,	a	“version”	is	called	
a	“commit.”

• Git keeps	track	of	the	history	of	your	commits,	
so	you	can	go	back	and	look	at	earlier	
versions,	or	just	give	up	on	the	current	version	
and	go	back	some	earlier	version.

4



A	simple	model	of	git

• Most	git documentation	gets	into	details	very	
quickly.

• Here’s	a	very	simple	model	of	what’s	going	on	
in	git.

5



Your	files

my-project docs manual.docx

user_docs.docx

src
main.rkt

module1.rkt

module2.rkt

module3.rkt

Here	are	your	files,	sitting	
in	a	directory	called	my-

project

6



Your	files	in	your	git repository

my-project docs manual.docx

user_docs.docx

src
main.rkt

module1.rkt

module2.rkt

module3.rkt

.git

When	you	have	a	git repository,	you	have	
an	additional	directory	called	.git,	which	
points	at	a	mini-filesystem.			

This	file	system	keeps	all	your	data,	plus	the	
bells	and	whistles	that	git needs	to	do	its	
job.		

All	this	sits	on	your	local	machine.

7



The	git client

my-project docs manual.docx

user_docs.docx

src
main.rkt

module1.rkt

module2.rkt

module3.rkt

.git

This	mini-filesystem is	highly	optimized	and	
very	complicated.		Don’t	try	to	read	it	
directly.

The	job	of	the	git client	(either	Github for	
Windows,	Github for	Mac,	or	a	suite	of	
command-line	utilities)	is	to	manage	this	for	
you.

8



Your	workflow	(part	1)

• You	edit	your	local	files	directly.
– You	can	edit,	add	files,	delete	files,	etc.,	using	
whatever	tools	you	like.

– This	doesn’t	change	the	mini-filesystem,	so	now	
your	mini-fs is	behind.

9



A	Commit

my-project docs manual.docx

user_docs.docx

src
main.rkt

module1.rkt

module2.rkt

module3.rkt

.git

commit

When	you	do	a	“commit”,	you	
record	all	your	local	changes	into	
the	mini-fs.

The	mini-fs is	“append-only”.		
Nothing	is	ever	over-written	
there,	so	everything	you	ever	
commit	can	be	recovered.

10



Synchronizing	with	the	server	(1)

my-project docs manual.docx

user_docs.docx

src
main.rkt

module1.rkt

module2.rkt

module3.rkt

.git push

At	the	end	of	each	work	session,	you	need	
to	save	your	changes	on	the	server.		This	is	
called	a	“push”.

Now	all	your	data	is	backed	up.
• You	can	retrieve	it,	on	your	machine	or	

some	other	machine.
• We	can	retrieve	it	(that’s	how	we	collect	

homework)

your	local	machine a	server,	somewhere	on	the	
internet,	eg.	github.com

11



Synchronizing	with	the	server	(2)

my-project docs manual.docx

user_docs.docx

src
main.rkt

module1.rkt

module2.rkt

module3.rkt

.git pull

To	retrieve	your	data	from	the	server,	you	
do	a	“pull”.		A	“pull”	takes	the	data	from	the	
server	and	puts	it	both	in	your	local	mini-fs
and	in	your	ordinary	files.

If	your	local	file	has	changed,	git will	merge	
the	changes	if	possible.		If	it	can’t	figure	out	
how	to	the	merge,	you	will	get	an	error	
message.		We'll	learn	how	to	deal	with	
these	in	the	next	lesson.

your	local	machine a	server,	somewhere	on	the	
internet,	eg.	github.com

pu
ll

12



The	whole	picture

my-project docs manual.docx

user_docs.docx

src
main.rkt

module1.rkt

module2.rkt

module3.rkt

.git
pull

your	local	machine a	server,	somewhere	on	the	
internet,	eg.	github.ccs.neu.edu

pu
ll

commit

push

13



We	recommend	Github Desktop

• This	is	a	nice	UI	for	github.
• If	your	prefer,	you	can	use	the	command	line,	or	
any	other	git interface	you	like.

• Point	your	copy	of	Github Desktop	to	use	“Github
for	Enterprise”	at	https://github.ccs.neu.edu

• We	recommend	that	you	set	up	your	repos	to	
“always	rebase”.		(When	we	set	up	your	repos,	we	
will	try	to	set	them	up	to	do	this	automatically)

14



Github Desktop	uses	a	simplified	git
model

• In	Github Desktop,	“push”	and	“pull”	are	combined	
into	a	single	operation	called	“sync”.		So	there	are	
only	two	steps	(“commit”	and	“sync”)	to	worry	
about,	not	three.

15

sy
nc

commit

my-project docs manual.docx

user_docs.docx

src
main.rkt

module1.rkt

module2.rkt

module3.rkt

.git

your	local	machine a	server,	somewhere	on	the	
internet,	eg.	github.ccs.neu.edu

sync



Your	workflow	with	GD
sync

edit

commit

edit

commit

edit

commit

sync

Best	practice:	commit	your	
work	whenever	you’ve	
gotten	one	part	of	your	
problem	working,	or	before	
trying	something	that	might	
fail.

If	your	new	stuff	is	screwed	
up,	you	can	always	“revert”	
to	your	last	good	commit.
(Remember:	always	
“revert”,	never	“roll	back”)

16



Your	workflow	with	a	partner

sync

edit

commit

edit

commit

edit

commit

sync

sync

edit

commit

edit

commit

edit

commit

sync

sync

edit

commit

edit

commit

edit

commit

sync

You You

Your	Partner	(or	
you	on	another	
computer)

Your	partner	
gets	your	work	
from	the	server

You	get	your	
partner’s	work	
from	the	server

server server

17



Starting	your	work	session
• Here’s	what	your	Github Desktop	should	look	like	when	you	

open	it	up.		Observe	that	your	repos	will	be	in	the	section	
labeled	“Enterprise”.

18



Where	am	I?
• The	open	blue	circle	indicates	that	you	are	looking	at	the	most	

recent	local	files

19



Always	start	by	syncing
• This	will	download	any	changes	that	you	or	your	partner	have	

made	on	other	machines

20



Click	on	a	dot	to	see	a	commit
• Clicking	on	the	last	dot	will	show	you	what	was	in	your	last	

commit
• The	dot	turns	blue

21



• In	this	view,	you	can	see	the	first	6	characters	of	the	unique	
identifier	(“the	SHA”)	for	this	commit

• You’ll	need	it	for	your	Worksession Report

This	shows	your	commit	SHA

22



Now	let’s	work	on	our	file
• Now	the	screen	shows	an	uncommitted	change.

23



• We	write	a	commit	message.		Then	we’ll	click	on	“Commit	to	
Master”

Next,	we	commit	our	work

24



• Now	it	says	“No	uncommitted	changes”	again.
• You	can	also	undo	the	commit	if	you	want.

Here’s	what	you’ll	see	after	a	commit

25



• Click	on	the	open	circle	to	see	what	was	in	your	commit,	and	
to	record	the	commit	SHA.		Here’s	that	screen	again:

Be	sure	to	record	the	commit	SHA

26



• Your	work	is	not	saved	on	the	server	until	you	sync.

Be	sure	to	sync!!!

27



Submit	a	Work	Session	Report
• At	the	end	of	your	work	

session,	submit	a	work	
session	report	via	the	web.

• The	URL	for	the	work	
session	report	will	appear	in	
each	problem	set.

• The	report	will	ask	for	the	
SHA	of	your	last	commit.		
You	can	get	this	from	the	
Github Desktop,	as	we’ve	
shown	you.

28



Other	ways	to	use	git and	github

• There	are	lots	of	possible	ways	to	use	git and	
github.

• If	you	and	your	partner	know	git well,	and	you	
want	to	do	something	fancier	with	multiple	
branches,	merges,	and	whatnot,	feel	free	to	
do	so.

• But	you	should	be	able	to	get	by	just	fine	with	
just	a	single	master	branch.

29

We	believe	in	the	KISS	principle:		
“Keep	It	Simple,	Stupid!”	



Summary

• In	this	lesson	you	have	learned
– that	git creates	a	mini-filesystem in	your	directory
– what	commit,	push,	pull,	and	sync	do
– the	elements	of	the	basic	git workflow
– how	git allows	you	to	work	across	multiple	
computers

– how	git allows	you	and	a	partner	to	work	together

30


