
Binary Search

CS 5010 Program Design Paradigms
“Bootcamp”
Lesson 8.2

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Introduction

• Binary search is a classic example that
illustrates general recursion

• We will look at a function for binary search

2

Things to notice about this case study

• Use of invariants to make sure that code is
correct

• Use of halting measure to guarantee
termination
– Justification relies on the invariant (!)

• Use of Java illustrates that our tools work in
other languages

• Iterative loop illustrates how our tools work in
imperative code.

3

Learning Objectives

• At the end of this lesson you should be able
to:
– explain what binary search is and when it is

appropriate
– explain how the standard binary search works,

and how it fits into the framework of general
recursion, invariants, and halting functions

– write variations on a binary search function

4

Binary Search

• Given an array A[0:N] of non-decreasing
integer values and a target tgt, find an i such
that A[i] = tgt, or else report not found.

5

We will use Java arrays

• In Java, we declare an array variable as int[] A
• The length of the array is written as A.length, and

the valid indices into such an array go from 0 to
A.length-1.

• (An array can be empty, with A.length = 0). For
binary search, we want A to be non-decreasing, that
is:

(for all i,j)((0 <= i <= j <= A.length) A[i] <= A[j])
• For the rest of this case study, when we say “A is non-

decreasing,” this is what we mean.
6

A picture of a non-decreasing array

7

i j

A[i] <= A[j]

(for all i,j)((0 <= i <= j <= A.length) A[i] <= A[j])

Pictures like this turn out to be very useful. Notice that
this picture tells us that the indices into the array range
from 0 to A.length -1

0 A.length

Our Purpose Statement

GIVEN: a non-decreasing array of ints
A and a target 'tgt'

RETURNS: a number k such that
0 <= k < A.length and f(k) = tgt
if there is such a k, otherwise
returns -1

8

Let's do the obvious generalization

• Instead of searching from 0 to A.length-1, we
can search an arbitrary range in the array.

• We don’t want to lose any solutions, so we
need to make sure that if tgt exists anywhere
in the array, it exists in [lo,hi-1].

9

Purpose Statement for the generalized
function

GIVEN: two integers lo and hi, a non-decreasing
array of ints A, and a target tgt
WHERE: 0 <= lo <= hi <= A.length
AND (forall j)(0 <= j < lo ==> A[j] < tgt)
AND (forall j)(hi <= j < A.length ==> A[j] > tgt)

RETURNS: a number k such that lo <= k < hi and f(k)
= tgt if there is such a k, otherwise -1.

10

I’ve highlighted the
occurrences of the new
arguments

Make sure that there are
no occurrences of tgt in
the array outside of [lo,h-1]

This invariant divides the array into
three regions:

• 0 <= j < lo where A[j] < tgt
• lo <= j < hi where we don’t know

anything
• hi <= j < A.length where A[j] > tgt

11

A picture of our invariant

12

lo hi

A[j]<x ??? A[j]>x

Notice that the arrows point just
to the right of the boundary.
This tells us which region A[lo]
and A[hi] belong to. Similarly,
the 0 and the A.length are just to
the right of the boundary.

Drawing the arrows just to
the right or just to the left
of the boundary prevents
many off-by-one errors.

I’m writing x here,
instead of tgt to
save space, sorry

0 A.length

Now we can write the main method

static int binsearch_recursive (int[]A, int tgt) {

// GIVEN: two integers lo and hi, a non-decreasing
// array of ints A, and a target tgt
// WHERE: 0 <= lo <= hi <= A.length
// AND (forall j)(0 <= j < lo ==> A[j] < tgt)
// AND (forall j)(hi <= j < A.length ==> A[j] > tgt)

// RETURNS: a number k such that lo <= k < hi and f(k)
// = tgt if there is such a k, otherwise -1.

return recursive_loop (0, A.length, A, tgt);
}

13

The invariant when recursive_loop is
called

14

lo = 0 hi = A.length

???

The unknown region is the entire
array; the other regions are empty.

What are the easy cases for
recursive_loop?

• if lo=hi, the search range [lo,hi-1] is empty, so
the answer must be -1

• Otherwise we will have to work harder.

15

lo
hi

A[j]<x A[j]>x

The “unknown”
region is empty!0 A.length

What if the search range is larger?

• Insight of binary search: divide it in half.
• At this point we know that lo < hi.
• Choose a midpoint mid in [lo,hi-1] and

compare A[mid] to tgt.
– mid doesn't have to be close to the center– any

value in [lo,hi-1] will lead to a correct program
– but choosing mid to be near the center means

that the search space is divided in half every time,
so you'll only need about log₂(hi-lo) steps.

16

What are the cases?

• Case 1: A(mid) = tgt
– then mid is our desired k.
– Done!

17

• Case 2: A(mid) < tgt
– so we can rule out mid, and all values less than

mid (because if j < mid, then A[j] ≤ A[mid] < tgt).
– So the answer k, if it exists, is in [mid+1, hi-1]
– So set lo to mid+1, leave hi unchanged

What are the cases?

18

0

lo hi

A[j]<x <x A[j]>x

midAll these must
also be < x

??

The
remaining
unknown
region

0 A.length

What are the cases?

• Case 3: A[mid] > tgt
– so we can rule out mid and all values greater than

mid, because if mid < j, then tgt < A[mid] <= A[j].
– So the answer k, if it exists, is in [lo,mid-1]
– So leave lo unchanged, and set hi to mid .

19

0

lo hi

A[j]<x >x A[j]>x

midThe remaining
unknown region

All these
must also
be > x

??

0 A.length

As code:
static int recursive_loop (int lo, int hi, int[] A, int tgt) {

if (lo == hi) { // the search area is empty
return -1;

}
else { /* do nothing */}
// choose an element in [lo,hi) .
int mid = (lo + hi) / 2;
if (A[mid] == tgt) { // we have found the target

return mid;
}
else if (A[mid] < tgt) {

// the target can't be to the left of mid, so search right half
return recursive_loop (mid+1, hi, A, tgt);

}
else {

// otherwise the target can't be to the right of mid, so
// search left half.
return recursive_loop (lo, mid, A, tgt);

}
}

20

Let’s watch this work

• Imagine A is an array with A[i] = i^2 for i in
[0,40).

• Let’s find an element of A that contains 49.

21

Watch this work

(recursive_loop 0 40 A 49)

= (recursive_loop 0 20 A 49)

= (recursive_loop 0 10 A 49)

= (recursive_loop 6 10 A 49)

= (recursive_loop 6 8 A 49)

= 7

22

mid = 20

mid = 10

mid = 5

mid = 8

mid = 7

What's the halting measure?

• Proposed halting measure: hi-lo
– (the size of the search region)

• Justification:
– Since the invariant says that lo <= hi, we are

guaranteed that hi-lo is a non-negative integer
– Must check to see that hi-lo decreases on every

recursive call.
– At the first recursive call, lo increases (since lo <= mid

< mid+1) and hi stays the same.
– At the second recursive call, lo stays the same but hi

decreases (mid will always be less than hi because
integer quotient rounds down).

23

Doing it with a loop

• The calculation we showed above looks like the
trace of a loop!

• So let’s write a loop that does the same thing.

24

(recursive_loop 0 40 A 49)

= (recursive_loop 0 20 A 49)

= (recursive_loop 0 10 A 49)

= (recursive_loop 6 10 A 49)

= (recursive_loop 6 8 A 49)

= 7

We want the loop trace to look like
this

looptop: lo=0 hi=40 tgt=49

looptop: lo=0 hi=20 tgt=49

looptop: lo=0 hi=10 tgt=49

looptop: lo=6 hi=10 tgt=49

looptop: lo=6 hi=8 tgt=49

loopexit: return 7

25

mid = 20

mid = 10

mid = 5

mid = 8

mid = 7

In this case, we can rewrite the
recursion as a loop

Instead of saying
return recursive_loop (..., ..., A, tgt);

we say
lo = ...
hi = ...

and go to the top of the loop.

26

The Method Definition (1)
static int binsearch_iterative (int[] A, int tgt) {

// GIVEN: An array A of integers and an integer target 'tgt'
// WHERE: A is non-decreasing
// RETURNS: a number k such that
// 0 <= k < A.length
// and A[k] = tgt
// if there is such a k, otherwise returns -1

int lo = 0;
int hi = A.length;

// INVARIANT:
// 0 <= lo <= hi <= A.length
// AND (forall j)(0 <= j < lo ==> A[j] < tgt)
// AND (forall j)(hi <= j < A.length ==> A[j] > tgt)

// Note that lo = 0 and hi = A.length makes the invariant
// true, since in both cases there is no such j.

// HALTING MEASURE: hi-lo
// JUSTIFICATION: Same as above.

27

The Method Definition (2)
while (lo < hi) { // the search area is non-empty

// choose an element in [lo,hi) .
int mid = (lo + hi) / 2;
if (A[mid] == tgt) {

// we have found the target
return mid;

}
else if (A[mid] < tgt) {

// the target can't be to the left of mid, so search right half.
lo = mid+1;

}
// otherwise the target can't be to the right of mid, so search left half.
else

hi = mid;
}

// the search area is empty
return -1;

}

28

Summary

• You should now be able to:
– explain what binary search is and when it is

appropriate
– explain how the standard binary search works,

and how it fits into the framework of general
recursion, invariants, and halting functions

– give the halting measure and explain the
termination argument for binary search

– write variations on a binary search function

29

Next Steps

• Study the file 08-2-binary-search.java in the
Examples folder

• If you have questions about this lesson, ask
them on the Discussion Board

• Do Guided Practice 8.3
• Go on to the next lesson

30

	Binary Search
	Introduction
	Things to notice about this case study
	Learning Objectives
	Binary Search
	We will use Java arrays
	A picture of a non-decreasing array
	Our Purpose Statement
	Let's do the obvious generalization
	Purpose Statement for the generalized function
	This invariant divides the array into three regions:
	A picture of our invariant
	Now we can write the main method
	The invariant when recursive_loop is called
	What are the easy cases for recursive_loop?
	What if the search range is larger?
	What are the cases?
	What are the cases?
	What are the cases?
	As code:
	Let’s watch this work
	Watch this work
	What's the halting measure?
	Doing it with a loop
	We want the loop trace to look like this
	In this case, we can rewrite the recursion as a loop
	The Method Definition (1)
	The Method Definition (2)
	Summary
	Next Steps

