
Invariants and Context Variables

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 7.2

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Key Points for Lesson 7.2

• Sometimes our function needs more information
than simply its place in a decision tree.

• We often capture this information in a context
variable.

• A context variable is an abstraction of the
information that we “pass over” when we recur
on a structure.

• The invariant serves as a kind of interpretation for
the data in the context variable.

2

Let’s do an example.

(define-struct bintree-node (left data right))

;; A XBintree is either

;; -- empty

;; -- (make-bintree-node XBintree X XBintree)

3

A XBintree is a binary tree with a
value of type X in each of its nodes.
For example, you might have
SardineBintree. This is, of course, a
different notion of binary tree than
we saw in Lesson 5.1.

Example: mark-depth (2)

;; mark-depth : XBintree -> NumberBintree

;; RETURNS: a bintree like the original, but

;; with each node labeled by its depth

4

Example

5

2 2

1 1

0

"bar" "quux"

"foo" "frob"

"baz"

Here's an example of the argument and result of
mark-depth. The argument is a StringBintree and
the result is a NumberBintree, just like the contract
says.

Observer Template for XBintree

(define (bintree-fn tree)

(cond

[(empty? tree) ...]

[else (...

(bintree-fn

(bintree-node-left tree))

(bintree-data tree)

(bintree-fn

(bintree-node-right tree)))]))

6

If we follow the recipe for
writing a template, this is
what we get for XBintree.

Filling in the template

(define (mark-depth tree)

(cond

[(empty? tree) ...]

[else (make-bintree-node

(mark-depth

(bintree-node-left tree))

...

(mark-depth

(bintree-node-right tree)))]))

7

We want to put the depth here.
But how do we know the depth?

We need another argument!

• We’ll add another argument to represent the
depth that we are in the tree.

• Then we can write:

8

Function Definition

(define (mark-depth-2 tree d)

(cond

[(empty? tree) empty]

[else (make-bintree-node

(mark-depth-2 (bintree-node-left tree)

(+ d 1))

d

(mark-depth-2 (bintree-node-right tree)

(+ d 1)))]))

9

Different arguments,
different contract.
We’ll change the
name so we won’t
get confused.

Function Definition, with Explanation

(define (mark-depth-2 tree d)

(cond

[(empty? tree) empty]

[else (make-bintree-node

(mark-depth-2 (bintree-node-left tree)

(+ d 1))

d

(mark-depth-2 (bintree-node-right tree)

(+ d 1)))]))

10

We are at depth d,
so we put a d in
this node.

If this tree is at depth d,
then its sons are at
depth d+1, so we recur
on the subtrees with (+ 1
d)

We start with a tree
at depth d.

How do we document this?

• We change the name of the function to mark-
subtree. To emphasize the fact that we are
dealing with a subtree somewhere inside a tree.

• We’ll reserve the original name for the original
function that works on the whole tree.

• We’ll also change the name of the argument from
tree to st (abbreviation for “subtree”) to keep us
focused on the fact that we’re dealing with

• Then we’ll add an invariant to say that d is the
depth of our node in the whole tree.

11

Function Definition, with Invariant

;; mark-subtree : XBintree NonNegInt-> NumberBintree
;; GIVEN: a subtree st of some tree t, and a non-neg int d
;; WHERE: the subtree occurs at depth d in the tree t
;; RETURNS: a subtree the same shape as st, but in which
;; each node is marked with its distance from the top of the tree t
;; STRATEGY: Use template for XBintree on stree

(define (mark-subtree st d)
(cond
[(empty? st) empty]
[else (make-bintree

(mark-subtree (bintree-left st)
(+ d 1))

d
(mark-subtree (bintree-right st)

(+ d 1)))]))

12

Function Definition, with Invariant

;; mark-subtree : XBintree NonNegInt-> NumberBintree
;; GIVEN: a subtree st of some tree t, and a non-neg int d
;; WHERE: the subtree occurs at depth d in the tree t
;; RETURNS: a subtree the same shape as st, but in which
;; each node is marked with its distance from the top of the tree t
;; STRATEGY: Use template for XBintree on stree

(define (mark-subtree st d)
(cond
[(empty? st) empty]
[else (make-bintree

(mark-subtree (bintree-left st)
(+ d 1))

d
(mark-subtree (bintree-right st)

(+ d 1)))]))

13

The invariant tells
us where we are
in the whole tree

If st is at depth d, then
its sons are depth d+1.
So the WHERE clause is
satisfied at each
recursive call.

And we need to reconstruct the
original function, as usual

;; mark-tree : XBintree -> NumberBintree

;; GIVEN: a binary tree t

;; RETURNS: a tree the same shape as t, but in which

;; each node is marked with its distance from the top of

;; the tree

;; STRATEGY: call a more general function

(define (mark-tree t)

(mark-subtree t 0))

14

The whole tree is a subtree of
itself, with its top node is at depth
0, so the invariant of mark-subtree
is satisfied the first time it is
called.

Structural Arguments and Context
Arguments

• In this example, we call st a structural argument:
we are recurring on the structure of this
argument.

• We call d a context argument: it tells us
something about the context in which we are
working. It generally changes at each recursive
call, because the recursive call is solving the
problem in a new or bigger context.

• The WHERE clause tells us how to interpret the
context argument as a context.

15

Let’s do another example

• Finding the sum of a list of numbers

• We’ve done this by a simple recursion, but
let’s do it a different way.

• In the simple recursion, we did the addition
from right to left.

• In the new solution, we’ll do it left to right.

16

;; nl-sum : NumberList -> Number

(define (nl-sum lst)

(cond

[(empty? lst) 0]

[else (+ (first lst)

(nl-sum (rest lst)))]))

The old solution: nl-sum (Lesson 4.1)

17

nl-sum sums from right to left

(nl-sum (cons 11 (cons 22 (cons 33 empty))))

= (+ 11 (nl-sum (cons 22 (cons 33 empty))))

= (+ 11 (+ 22 (nl-sum (cons 33 empty))))

= (+ 11 (+ 22 (+ 33 (nl-sum empty))))

= (+ 11 (+ 22 (+ 33 0)))

= (+ 11 (+ 22 33))

= (+ 11 55)

= 66

18

A different solution

(define (sublist-sum so-far unsummed)
(cond
[(empty? unsummed) so-far]
[else (sublist-sum (+ so-far (first unsummed))

(rest unsummed))]))

(define (list-sum l)
(sublist-sum 0 l))

19

Think about this
definition for a
minute. Can you
figure out how it
works?

Let’s watch this one work

(list-sum (cons 11 (cons 22 (cons 33 empty))))

= (sublist-sum 0 (cons 11 (cons 22 (cons 33 empty))))

= (sublist-sum 11 (cons 22 (cons 33 empty)))

= (sublist-sum 33 (cons 33 empty))

= (sublist-sum 66 empty)

= 66

20

This function works from left to right

• The first argument to sublist-sum is the sum of all
the elements we’ve looked at “so far”.

• This is a context argument: at each recursive call,
represents the context in which sublist-sum is
called.

• We say that it abstracts the context: it keeps only
as much information about the context as the
function needs.

• Let’s write down a proper invariant to document
this:

21

Invariant for sublist-sum

;; sublist-sum : Number NumberList -> Number
;; GIVEN: a number 'so-far' and a list of numbers 'unsummed'
;; WHERE: 'unsummed' is a sublist of some list 'whole-list'
;; AND: so-far is the sum of all the elements to the left of
;; unsummed in whole-list
;; RETURNS: the sum of all the elements in whole-list.
;; EXAMPLE:
;; (sublist-sum 5 (list 2 3 4)) = 14 [whole-list was (3 2 2 3 4)]
;; (sublist-sum 5 (list 2 3 4)) = 14 [whole-list was (3 1 1 2 3 4)]
;; note that a given set of arguments might correspond to different
;; values of 'whole-list'. All we care about whole-list is that the
;; sum of its elements before the (list 2 3 4) is exactly 5.
;; STRATEGY:
;; observer pattern for NumberList on 'unsummed'
(define (sublist-sum so-far unsummed)

(cond
[(empty? unsummed) so-far]
[else (sublist-sum (+ so-far (first unsummed))

(rest unsummed))]))

22

so-far is the sum of
the elements on
whole-list that
we’ve looked at so
far; unsummed is
the portion of the
list that we haven’t
summed yet.

Recipe for context arguments

23

Recipe for context arguments

Is information being lost when you do a structural
recursion? If so, what?

Formulate a generalized version of the problem that works
on a substructure of your original. Add a context argument
that represents the information "above" the substructure.
Document the purpose of the context argument as an
invariant in your purpose statement.

Design and test the generalized function.

Define your original function in terms of the generalized
one by supplying an initial value for the context argument.

Wait: what do we mean by "above"?

24

11

55

44

33

22

These nodes are "above"
the sublist (44 55 ...)

The sublist (44 55 ...)

Review: Key Points for Lesson 7.2

• Sometimes our function needs more information
than simply its place in a decision tree.

• We often capture this information in a context
variable.

• A context variable is an abstraction of the
information that we “pass over” when we recur
on a structure.

• The invariant serves as a kind of interpretation for
the data in the context variable.

25

Next Steps

• Study 07-2-1-mark-depth.rkt and 07-2-2-sum-
list.rt

• If you have questions about this lesson, ask
them on Piazza.

• Do Guided Practices 7.1 and 7.2

– Be sure to do GP7.2, since it introduces material
not covered in the slides!

• Go on to the next lesson

26

