
Introduction to Invariants

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 7.1

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Module Introduction

• We introduce invariants as a way of recording
the assumptions that a function makes about
its arguments.

• Invariants divide the responsibility for
guaranteeing the truth of these assumptions
between the function and its callers.

2

Learning Outcomes for this Module

• At the end of this module, you should be able
to

– Determine from the purpose statement of a
function whether an invariant is necessary.

– write invariants to document the assumptions
that a function makes about its arguments.

– explain how invariants divide responsibility
between a function and its callers.

3

Module 07

4

Basic Principles

Designing
Data

Designing
Functions

Designing
Systems

Tools and
Techniques

Computing
with Lists

Computing
with Trees

and Graphs

Computing
with Higher-

Order Functions

Designing
with

Invariants

Thinking
about

Efficiency

Object-Oriented
Programming

Interfaces and
Classes

Inheritance

Objects with
Mutable State

Efficiency,
Part 2

Learning Outcomes for Lesson 7.1

• At the end of this lesson, you should be able
to

– explain how invariants divide responsibility
between a function and its callers

– Use invariants to document how a function fits
into the call tree of your program

5

Review: What does a contract mean?

• A function always gets to assume that its
arguments satisfy its contract.

• It’s up to the callers of the function to
guarantee that the function’s contract is
satisfied at every call.

6

• Sometimes a function needs more information
than is available in a contract.

• We need to write down the additional
information that the function needs.

Sometimes the contract isn’t enough

7

Remember: one of our goals
is to get information out of
your head and onto the page.

;; ball-normal-motion : Ball -> Ball

;; GIVEN: a Ball

;; RETURNS: the state of the ball after a

;; tick.

(define (ball-normal-motion b)

(make-ball

(+ (ball-x-pos b) BALLSPEED)))

Example

8

Imagine a ball bouncing back and
forth in a closed box in the x
direction. We might write
something like this:

But if the ball is about to bounce off the wall,
this code does NOT return the correct state of
the ball after the next tick– it doesn’t account
for the bouncing.

This function only fulfills its purpose
statement if it is given a ball that doesn’t
bounce on the next tick.

;; ball-normal-motion : Ball -> Ball

;; GIVEN: a Ball

;; WHERE: the Ball is not going to

;; collide with a wall on this tick

;; RETURNS: the state of the ball after a

;; tick.

(define (ball-normal-motion b)

(make-ball

(+ (ball-x-pos b) BALLSPEED)))

Here’s how to document the
assumptions that this function makes

9

The WHERE-clause

• The WHERE-clause is called an invariant or
precondition. We will use both words
interchangeably.

• It is an additional restriction (beyond the
contract) on the inputs to the function.

• Like the contract, it limits the responsibility of
the function to only those inputs that satisfy
both the contract and the precondition.

10

Dividing Responsibilities

• The invariant, along with the contract, sets down
the assumptions that each function makes about
the arguments that it processes

• It is up to each caller of the function to make sure
that the invariant is true at every call.

• The function gets to assume that the invariant is
true.

• The function does not need to check that the
invariant is true– indeed, often that is impossible.

11

This isn't completely new:

Here are some examples of WHERE clauses that we've
seen (or might have seen) before:

-- A Ring is a (make-ring Real Real)

WHERE inner < outer

-- An TelephoneBook is a ListOfEntries

WHERE the entries are sorted by name

12

More examples of WHERE clauses

unpaused-world-after-tick
: World -> World

GIVEN: a World
WHERE: the world is not paused
RETURNS: the state of the world after the next tick

ball-bounce-motion
: Ball -> Ball

GIVEN: a Ball
WHERE: we know the ball will hit the wall on the next

tick
RETURNS: the state of the ball after the next tick.

13

In each case, it is the responsibility of
the caller to make sure the invariant is
satisfied before the function is called.

And conversely, the function
gets to assume that the

invariant is satisfied.

Invariants can help us keep track of
our assumptions
;; ball-after-tick : Ball -> Ball

;; GIVEN: the state of a ball

;; RETURNS: the state of the ball

;; after the next tick

(define (ball-after-tick b)

(if (ball-would-hit-wall? b)

(ball-after-bounce b)

(ball-normal-motion b)))

14

Consider our
ball again.
We might
write
something
like this:

Purpose statements for our helper
functions

;; ball-would-hit-wall? : Ball -> Boolean

;; GIVEN: the state of a Ball

;; RETURNS: true iff the ball, in its normal motion, would hit the

;; wall on the next tick

;; ball-after-bounce : Ball -> Ball

;; GIVEN: the state of a Ball

;; WHERE: the ball, in its normal motion, would hit the wall on the

;; next tick

;; RETURNS: the state of the ball after the next tick

;; ball-normal-motion : Ball -> Ball

;; GIVEN: the state of a Ball

;; WHERE: the ball, in its normal motion, would not hit the wall on the

;; next tick

;; RETURNS: the state of the ball after the next tick

15

The invariant documents the fact
that ball-after-bounce is only called
if ball-would-hit-wall? returns true.

Similarly, the invariant documents the fact
that ball-normal-motion is only called if
ball-would-hit-wall? returns false.

Lesson Summary

• You should now be able to

– explain how invariants divide responsibility
between a function and its callers

– Use invariants to document how a function fits
into the call tree of your program

16

Next Steps

• Study 07-1-1-bouncing-ball.rkt in the
Examples folder.

• If you have questions about this lesson, ask
them on Piazza.

• Go on to the next lesson.

17

