
foldr

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 6.4

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Introduction

• In this lesson, we will explore another
common pattern in functions defined by the
list template.

• We will generalize this to a function called
foldr.

• We will visualize how foldr works, and show
an important application area.

2

Learning Objectives

• At the end of this lesson you should be able
to:

– describe, recognize, and use the foldr pattern.

3

What else could be different?

4

;NumberList -> NumberList
(define (add-1-to-each lon)
(cond
[(empty? lon) empty]
[(else (cons

(add1
(first lon))

(add1-to-each
(rest lon))))]))

;EmployeeList -> ListOfString
(define (extract-names lop)
(cond
[(empty? lop) empty]
[else (cons

(Employee-name
(first lop))

(extract-names
(rest lop)))]))

Here is the example we used to introduce map. In
this example, both of the brown functions are cons,
but in some other function there could be
something else in that position.

Another example

5

;; NumberList -> Number

(define (sum lon)
(cond

[(empty? lon) 0]
[else (+

(first lon)
(sum
(rest lon)))]))

;; NumberList -> Number
(define (product lon)
(cond

[(empty? lon) 1]
[else (*

(first lon)
(product
(rest lon)))]))

Both these functions take a list of numbers and return a number.
sum returns the sum of the elements of the given list. product
returns the product of the elements of the given list.
These functions are just alike, except for the differences marked in
red and green.

Let's generalize these

• sum and product can be generalized to a function we call
foldr, with two new arguments: one called fcn, for the
function in the green position, and one called val, for the
value in the red position. The strategy for foldr is using the
template for XList on its list argument.

• Our original sum and product functions can be recreated by
supplying + and 0, or * and 1, as the two arguments. The
strategy for these new versions of sum and product is "Use
HOF foldr on ...".

• The name foldr is a standard name for this function, so that
is the name we will use. foldr is already defined in ISL, so
you don't need to write out the definition.

• Let's look at the code:

6

Create two new arguments for the two
differences.

7

(define (foldr fcn val lon)
(cond

[(empty? lon) val]
[else (fcn

(first lon)
(foldr fcn val (rest lon)))]))

;; strategy: Use HOF foldr on lon
(define (sum lon) (foldr + 0 lon))
(define (product lon) (foldr * 1 lon))

We call this "foldr" (we'll explain the name later)

This is predefined in ISL, so
you don't need to write
out this definition

What is the purpose statement?

;; foldr : (X Y -> Y) Y XList -> Y
;; RETURNS: the result of applying f on the
;; elements of the given list
;; from right to left, starting with base.
;; (foldr f base (list x_1 ... x_n))
;; = (f x_1 ... (f x_n base))

8

What is the contract for foldr?

Based on our two examples we might guess the
following contract for foldr: Here is one guess for the
contract for foldr, based on our two examples:

foldr :
(Number Number -> Number) Number NumberList

-> Number

This works, because + and * both have contract
(Number Number -> Number), and 0 and 1 are
both numbers.

9

But there is nothing in the definition of foldr that mentions numbers, so foldr could
work at contract

(X X -> X) X XList -> X

that is, you could use foldr at
(Boolean Boolean -> Boolean)
Boolean
BooleanList
-> Boolean
or
(Employee Employee -> Employee)
Employee
EmployeeList
-> Employee

What is the contract for foldr?

10

The 3 arguments to foldr

The 3 arguments to foldr

Let's watch foldr compute on this list

11

empty

x4

x3

x2

x1

fcn

fcn

fcn

fcn

valx1

x3

x2

x4

y2

y3

y4

y1

Step through the animation to watch the computation of
(foldr fcn val (list x4 x3 x2 x1))

What can we learn from this?

• The base value val is a possible 2nd argument to fcn.

• The result of fcn becomes a 2nd argument to fcn.

• So this will work as long as
– val,

– the 2nd argument to fcn,

– and the result of fcn

are all of the same type.

• So fcn must satisfy the contract (X Y -> Y) for
some X and Y.

12

What else can we learn?

• The elements of the list become the first
argument to fcn.

• So if fcn satisfies the contract (X Y -> Y),
then the list must be of type XList.

• So the contract for foldr is:

13

foldr : (X Y -> Y) Y XList -> Y

The contract for foldr (again!)

• The contract for foldr is

• So foldr takes 3 arguments:
– a combiner function that satisfies the contract

(X Y -> Y)

– a base value of type Y

– and a list of X's.

• And it returns a value of type Y.

14

foldr : (X Y -> Y) Y XList -> Y

Another picture of foldr

15

()x1

f

x3

f

x2

f

x4

f

x5

f val

(foldr f val (list x1 ... x5))

Here's another visualization of foldr that you may
find helpful.

What kind of data is on each arrow?

16

xi

f

X

Y Y

Y

We can think of foldr as starting with the base
value val, and putting it through a pipeline of
f's, where each f also takes one of the x's as an
input. The x's are taken right-to-left, which is
why it is called foldr .

17

(foldr f a (list x1 ... x5))

()x1

f

x3

f

x2

f

x4

f

x5

f val

Another example:

;; strategy: combine simpler functions
(define (add1-if-true b n)

(if b (+ n 1) n))

;; strategy: Use HOF foldr on lob
(define (number-of-trues lob)

(foldr add1-if-true 0 lob))

Or even better:

;; strategy: Use HOF foldr on lob
(define (number-of-trues lob)

(local ((define (add1-if-true b n)
(if b (+ n 1) n)))

(foldr add1-if-true 0 lob)))

18

What is the contract for
add1-if-true ? At what
contract is foldr being
used in this example?
What is returned by
count-trues ? Try to
answer these questions
before proceeding to the
next slide.

What are the contracts?

add1-if-true : Boolean Number -> Number
In general:
foldr : (X Y -> Y) Y XList -> Y
In this case, X = Boolean and Y = Number, so we are using
foldr at the contract

(Boolean Number -> Number)
Number BooleanList -> Number

and therefore
count-trues : BooleanList -> Number

19

Local functions need contracts and
purpose statements too

(define (count-trues lob)

(local (; add1-if-true : Boolean Number -> Number

; RETURNS: the number plus 1 if the boolean is

; true, otherwise returns the number unchanged.

(define (add1-if-true b n) (if b (+ n 1) n)))

(foldr add1-if-true 0 lob)))

• They count as help functions, so they don't
need separate tests.

20

Local functions need their deliverables, too. They
count as help functions, so they don't need separate
tests. If they are complicated enough to need
examples or tests, then you should make them
independent functions with a full set of deliverables.

The whole thing
(less examples and tests)

;; count-trues : BooleanList -> Number

;; RETURNS: the number of trues in the given list of booleans.

;; STRATEGY: Use HOF foldr on lob

(define (count-trues lob)

(local (; add1-if-true : Boolean Number -> Number

; RETURNS: the number plus 1 if the boolean is

; true, otherwise returns the number unchanged.

(define (add1-if-true b n)

(if b (+ n 1) n)))

(foldr add1-if-true 0 lob)))

21

HOFs can help you write code for
trees, too

;; grandchildren : Person -> PersonList

;; STRATEGY: Use template for Person on p

(define (grandchildren p)

(all-children (person-children p)))

;; all-children : PersonList -> PersonList

;; STRATEGY: Use HOF map on ps

(define (all-children ps)

(foldr append empty

(map person-children ps)))

22

A PersonList is a list, so we can
use our list abstractions in the
definition of all-children.

Remember grandchildren,
from Lesson 5.2. Here’s a
version that uses foldr in all-
children.

Compare this version of all-
children with the one in
Lesson 5.2. Do you see the
connection?

Here is all-descendants, rewritten with
foldr.

;; Person -> PersonList

;; STRATEGY: Use template for Person on p

(define (person-descendants p)

(append

(person-children p)

(all-descendants (person-children p))))

;; PersonList -> PersonList

;; STRATEGY: Use HOF map followed by foldr

(define (all-descendants ps)

(foldr append empty

(map person-descendants ps)))

23

The functions are still
mutually recursive.

mapreduce

;; mapreduce : (Y Y -> Y) Y (X -> Y) XList -> Y

;; GIVEN: f v g (list x1 ... xn))

;; RETURNS:

;; (f (g x1) (f (g x2) (f (g x3) ... v)))

(define (mapreduce f v g lst)

(foldr f v (map g lst)))

24

Many problems can be stated in this
form, with f associative, and v the
identity of f.

Mapreduce (cont’d)

• When f is associative and v is the identity of f,
we can write f infix, i.e.:

– We write 𝑥 [𝑓] 𝑦 instead of (f x y)

• Then we can write the result of mapreduce as
(𝑔 𝑥1) [𝑓] (𝑔 𝑥2) [𝑓] … [𝑓] (𝑔 𝑥𝑛)

25

;; BoolList -> NonNegInt

;; RETURNS: the number of trues in the given list of

;; Booleans.

(define (number-of-trues lob)

(let ((mapper (lambda (b) (if b 1 0))))

(mapreduce + 0 mapper lob)))

Tiny Example

26

+ is associative, and 0 is its
identity

Many database tasks can be expressed
in this form

• SQL operations:

– Count

– Filter

– ALL

– EXISTS

27

Why this wins

• When f is associative, and v is its identity, can
turn the calls to f into a tree and do them in
parallel on a server farm!

• For a data set of size n, this reduces the
processing time from n to log(n).

• Here is a picture:

28

From linear time to logarithmic

29

f

h f

h f

h f

h f

h f

h f

h f

h v

𝑛

h h h h h h h

f f f f

f f

f

h

log(𝑛)

You could do some of this in parallel

• Divide the subtrees across several different
processors or clusters…

30

Where does the data come from?

• The data might not be a list.
• It might be data extracted from a large database.
• So your application would have 2 parts

– some SQL to extract a table full of data (like "map")
– the function you want to reduce the data with.

• The SQL insulates your application from the physical
layout of the DB; the SQL query optimizer can probably
get your data out of the DB fast.

• mapreduce systems (like Hadoop or Spark) allow you to
configure the 'reduce' phase to make use of the
available hardware.

31

Summary

• You should now be able to:

– describe, recognize, and use the foldr pattern.

– state the contracts for ormap, andmap, and
filter and foldr, and use them appropriately.

– combine these functions using higher-order
function combination.

32

Next Steps

• If you have questions about this lesson, ask
them on the Discussion Board

• Do Guided Practice 6.4

• Go on to the next lesson

33

