
More About Recursive Data
Types

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 5.5

1
© Mitchell Wand, 2016-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Introduction

• We've just seen several examples of data
definitions for recursive data

• In this lesson we’ll learn more about the
characteristics of a good data type definition
and explore how functions on a recursive data
type work.

2

Key Points for Lesson 5.6

• At the end of this lesson you should be able to

– list the properties that a data type with multiple
constructors must have.

– illustrate how a recursive function that follows the
observer template always calls itself on smaller
and smaller structures.

3

Multiple constructors

• In order to define recursive data, we
introduced data definitions with multiple
constructors, e.g.:

4

;; CONSTRUCTOR TEMPLATES:
;; empty
;; (cons bs inv)
;; -- WHERE ...

;; CONSTRUCTOR TEMPLATES:
;; -- (make-leaf Number)
;; -- (make-node Tree Tree)

CONSTRUCTOR TEMPLATES
for NonEmptyXList:
-- (cons X empty)
-- (cons X NonEmptyXList)

Properties of a good data definition for
recursive data

• There are one or more base cases that do not
use recursion

• The cases are mutually exclusive

• It is easy to tell the alternatives apart

• There is one and only one way of building any
value.

• There is an interpretation for each case.

5

Did our definitions have these
properties?

• Go back now and check to see that our
definitions have these properties.

• All the definitions we (and you) will write will
have these properties.

6

Observer templates always recur on
smaller pieces of data

• Our observer templates embody the principle
that the shape of the program follows the
shape of the data.

• This means that our functions always recur on
smaller pieces of the data.

• Let’s first see what that means for lists

7

is-component-of

The Shape of the Program Follows the
Shape of the Data: Lists

8

Data Hierarchy (a
non-empty Xlist
contains another
Xlist)

Call Tree (xlist-fn
calls itself on the
component)

xlist-fnXlist calls

Let’s watch this in action: remember
nl-sum

;; nl-sum : NumberList -> Number

(define (nl-sum lst)

(cond

[(empty? lst) 0]

[else (+ (first lst)

(nl-sum (rest lst)))]))

9

Watch this work:

(nl-sum (cons 11 (cons 22 (cons 33 empty))))

= (+ 11 (nl-sum (cons 22 (cons 33 empty))))

= (+ 11 (+ 22 (nl-sum (cons 33 empty))))

= (+ 11 (+ 22 (+ 33 (nl-sum empty))))

= (+ 11 (+ 22 (+ 33 0)))

= (+ 11 (+ 22 33))

= (+ 11 55)

= 66

10

Clearly, this function will halt for any
NumberList

• Why?

• Because at every step it works on a shorter
and shorter list, so eventually it reaches
empty? and the function halts.

11

Let’s try something more complicated

• What about descendant trees?

• Remember the constructor templates:

12

;; CONSTRUCTOR TEMPLATES:
;; For Person:
;; (make-person String PersonList)
;; For PersonList:
;; empty
;; (cons Person PersonList)

The Shape of the Program Follows the
Shape of the Data: Descendant Trees

13

Data Hierarchy: Person
contains PersonList as a
component; and
PersonList has Person
as a component

Call Tree: person-fn
calls plist-fn, and
plist-fn calls
person-fn.

Person PersonList

is-component-of

is-component-of

person-fn plist-fn

calls

calls

Template: functions come in pairs

;; person-fn : Person -> ??

(define (person-fn p)

(... (person-name p)

(plist-fn (person-children p))))

;; plist-fn : PersonList -> ??

(define (plist-fn ps)

(cond

[(empty? ps) ...]

[else (... (person-fn (first ps))

(plist-fn (rest ps)))]))

14

Here is the pair of
templates that we
get by applying the
recipe to our data
definition.

They are mutually recursive,
as you might expect.

Let’s look at our old example again

(define alice (make-person "alice" empty))

(define bob (make-person "bob" empty))

(define chuck (make-person "chuck" (list alice bob)))

(define dave (make-person "dave" empty))

(define eddie

(make-person "eddie" (list dave)))

(define fred

(make-person

"fred"

(list chuck eddie)))

15

fred

chuck

alice

bob

eddie

dave

Let's look at the data structure

16

"fred"

"chuck" "eddie"

"alice" "bob" "dave"

a Person

a String

a PersonList

A Person consists of a String
and a PersonList

(person-children p) is always a smaller
structure than p.

17

"fred"

"chuck" "eddie"

"alice" "bob" "dave"

person1 =
(person-name person1) = "fred"
(person-children person1) =

The same thing works for NonNegInts

;; sum :

;; NonNegInt NonNegInt -> NonNegInt

(define (sum x y)

(cond

[(zero? x) y]

[else (+ 1 (sum (- x 1) y))])

18

Example

(sum 3 2)

= (+ 1 (sum 2 2))

= (+ 1 (+ 1 (sum 1 2)))

= (+ 1 (+ 1 (+ 1 (sum 0 2))))

= (+ 1 (+ 1 (+ 1 2)))

= 5

19

At every recursive call, the value of the
first argument decreases, so eventually
it reaches 0.

Fibonacci

;; fib : NonNegInt -> NonNegInt
;; GIVEN: a non-negative integer n
;; RETURNS: the n-th fibonacci number
;; EXAMPLES:
;; fib(0) = 1, fib(1) = 1, fib(2) = 2, fib(3) = 3,
;; fib(4) = 5, fib(5) = 8, fib(6) = 13
;; STRATEGY: Recur on n-1 and n-2
(define (fib n)

(cond
[(= n 0) 1]
[(= n 1) 1]
[else (+ (fib (- n 1))

(fib (- n 2)))]))

20

At every recursive call, the value of n
decreases, so eventually it reaches 0 or
1.

Bad Fibonacci

;; bad-fib : NonNegInt -> NonNegInt
;; GIVEN: a non-negative integer n
;; RETURNS: the n-th fibonacci number
;; EXAMPLES:
;; fib(0) = 1, fib(1) = 1, fib(2) = 2, fib(3) = 3,
;; fib(4) = 5, fib(5) = 8, fib(6) = 13
;; STRATEGY: Recur on n-1 and n-2
(define (bad-fib n)

(cond
[(= n 0) 1]
[(= n 1) 1]
[else (+ (bad-fib (- n 1))

(bad-fib (- n 2)))]))

21

At every recursive call, the value of n
decreases.

But wait! When n = 1,
this gets into an
infinite loop.

(bad-fib 1)

= (bad-fib -1)

= (bad-fib -3)

= ...

What went wrong?

22

The contract says the argument to bad-fib is
supposed to be a NonNegInt.

When n=1, the call (bad-fib (- n 2)) VIOLATES
THE CONTRACT, so all bets are off.

It’s really important to make sure that your
recursive calls don’t violate the function’s
contract. We’ll see much more about this in
Module 07.

Summary

• At the end of this lesson you should be able to

– list the properties that a data type with multiple
constructors must have.

– illustrate how a recursive function that follows the
observer template always calls itself on smaller
and smaller structures.

23

Next Steps

• If you have questions about this lesson, ask
them on the Discussion Board

24

