
Doing it in Java

CS 5010 Program Design Paradigms 
“Bootcamp”

Lesson 5.4

1
© Mitchell Wand and William Clinger, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/


Lesson Outline

• In this lesson, we'll see how the binary tree 
example from Lesson 5.1 might be done in 
Java.

• This is representative of other object-oriented 
languages.

• This lesson is enrichment for those of you who 
already know some Java.

• It is not intended to teach you Java or OOP; 
that will come later in the course.

2



Key Points for Lesson 5.4

• objects are like structs
• classes are like structure definitions, but with 

methods (functions) as well as fields
• To invoke a method of some object, send a 

message to the object.
• the interface of an object is the set of messages 

to which it responds
• interfaces correspond to data definitions
• Racket code and Java code are similar, but 

grouped differently

3



Classes

• A class is  like a define-struct.

• It specifies the names of  the fields of its 
objects.

• It also contains some methods.  Each method 
has a name and a definition.

• To create an object of class C, we say

new C()

4

You say more than this, but 
this is good enough right 

now.



A typical class definition

class C1 {

int x;

int y;

int r;

public C1(int x_init, int y_init, int r_init) {

x = x_init ; y = y_init; r = r_init; }

public int foo () { return x + y; }

public int bar (int n) { return r + n; }

...

}

5

Every object of class C1 has 
three fields, named x, y, 
and r.

Some annoying 
boilerplate for 
constructing 
objects of this  
class.  This is 
the code that is 
executed when 
you call new. 
You don't need 
to worry about 
this right now.

The class definition also defines 
two methods, named foo and bar, 
that are applicable to any object of 
this class.



How do you compute with an object?

• To invoke a method of an object, we invoke a 
method of the object.

• For example, to invoke the area method of an 
object obj1, we write

obj1.area()

• If obj1 is  an object of class C, this invokes the 
area method in class C.

• We sometimes say that we send obj1 an area
message.

6

if area was a method that took an 
argument, like bar on the preceding 
slide, we'd put the argument here



Example

• If obj1 was an object of class C1 with 

– x = 10, y = 20, r = 14

• and obj2 was a object of class C1 with

– x = 15, y = 35, r = 5

• then we would have

– obj1.bar(8) = 22

– obj2.bar(8) = 13

7



Every object knows its own class

class C2 {
int a;
int b;
int c;

// constructor (annoying boilerplate)
public C2(int a_init, int b_init, int c_init) {
a = a_init; b = b_init; c = c_init; }

public int foo () { return a + b; }
public int bar (int n) { return c * n; }

}

8

Here's a different class, with different field names 
and with the same names but different definitions 
than those in C1.



Every object knows its own class

• If we define obj3 by new C2(15,35,5), and we 
send a message to obj3, then the methods 
defined in class C2 will be invoked.

• So:

– obj2.bar(8) = 5 + 8 = 14

– obj3.bar(8) = 5 * 8 = 40

9



Interfaces are data types

• In Java, we characterize values by their behavior, 
not by their structure.

• The set of messages to which an object responds 
(along with their contracts) is called its interface.

• So the contract for an object-oriented method of 
function should be expressed in terms of 
interfaces.

• So interfaces play the role of data types in the 
OOP setting.

10



Example in Racket 

;; Imagine we had a data definition in

;; Racket:

;; A GreenThing is represented as one of

;; -- (make-C1 x y r)

;; -- (make-C2 a b c)

;; with the following fields:

;;  x,y,r,a,b,c : Int

11



In Java, we do it differently

• In Java, we characterize objects by their 
behavior, not by their structure.

• So in Java we would write

12



A Java interface

// a GreenThing is an object of any class that implements
// the GreenThing interface.  

// any class that implements GreenThing must provide 
// methods named foo and bar
// with the specified contracts

interface GreenThing {

int foo ();
int bar (int n);

}

13



Classes C1 and C2 both implement 
GreenThing

class C1 implements GreenThing {

int x;

int y;

int r;

// constructor omitted

public int foo () { 

return x + y; }

public int bar (int n) {

return r + n; }

}

class C2 implements GreenThing {

int a;

int b;

int c;

// constructor omitted

public int foo () { 

return a + b; }

public int bar (int n) {

return c * n; }

}

14

In Java, you must explicitly declare the 
interface that a class is supposed to 
implement.  Then the compiler checks that 
you've done it correctly.



So what?

• Now we can write a method that will take any 
GreenThing, whether it's a C1 or a C2:

static int apply_bar (GreenThing o) {

return o.bar(8);

} 

15

static is Java's way of writing functions that 
are not associated with any object.  If you 
don't know about this, don't worry about it 
for now– we are just trying to communicate 
ideas, not details.



Tests

C1 obj1 = new C1(10, 20, 14);
C1 obj2 = new C1(15, 35, 5)
C2 obj3 = new C2(15, 35, 5);

assert obj1.bar(8) == 22;
assert obj2.bar(8) == 13;
assert obj3.bar(8) == 40;

// now let's run the same three tests,
// but using the apply_bar method

assert apply_bar(obj1) == 22;
assert apply_bar(obj2) == 13;
assert apply_bar(obj3) == 40;

16

apply_bar will work on 
any GreenThing, whether 
it was constructed as a C1
or as a C2 (or any other 
class that implements 
GreenThing).



Now let's do binary trees

;; A Binary Tree is represented as a BinTree, which is either:
;; (make-leaf datum)
;; (make-node lson rson)

;; INTERPRETATON:
;; datum      : Real       some real data
;; lson, rson : BinTree the left and right sons of this node

;; IMPLEMENTATION:
(define-struct leaf (datum))
(define-struct node (lson rson))

;; CONSTRUCTOR TEMPLATES:
;; -- (make-leaf Number)
;; -- (make-node Tree Tree) 

17

Remember the 
Racket version from 
Lesson 5.1



The BinTree interface

// a BinTree is an object of any class that
// implements BinTree.

interface BinTree {

int leaf_sum (); // returns the sum of the
// values in the leaves

int leaf_max (); // returns the largest value 
// in a leaf of the tree

int leaf_min (); // returns the smallest value
// in a leaf of the tree

}

18



The Leaf class

class Leaf implements BinTree {
int datum;   // some integer data

Leaf (int n) {datum = n;}

public int leaf_sum () {return datum;}
public int leaf_max () {return datum;}
public int leaf_min () {return datum;}

}

19



The Node class

class Node implements BinTree {

BinTree lson, rson;   // the left and right sons

Node (BinTree l, BinTree r) {lson = l ; rson = r;}

public int leaf_sum () {

return (lson.leaf_sum() + rson.leaf_sum());

}

public int leaf_max () {

return (max (lson.leaf_max(), rson.leaf_max()));

}

public int leaf_min () {

return (min (lson.leaf_min(), rson.leaf_min()));

}

} 20

recur on the sons, 
and then take their 
sum, just like in the 
Racket code

and similarly....



Organization of the code

21

The Racket and Java 
versions have basically 
the same 6 snippets of 
code, but they are 
grouped differently

Leaf Node

leaf_sum

leaf_max

leaf_min

Leaf Node

leaf_sum

leaf_max

leaf_min

organization in Racket

organization in Java



Key Points for Lesson 5.4

• objects are like structs
• classes are like structure definitions, but with 

methods (functions) as well as fields
• To invoke a method of some object, send a 

message to the object.
• the interface of an object is the set of messages 

to which it responds
• interfaces correspond to data definitions
• Racket code and Java code are similar, but 

grouped differently

22



• Study the files 05-4-1-classes.java, 05-4-2-
interfaces.java, and 05-4-3-javatrees.java in 
the Examples folder.

• If you have questions about this lesson, ask 
them on the Discussion Board

• Go on to the next lesson

Next Steps

23




