
Lists of Lists

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 5.3

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Learning Outcomes

• At the end of this lesson, the student should
be able to

– Give examples of S-expressions

– Write the data definition and template for S-
expressions

– Write functions on S-expressions using the
template

2

S-expressions (informally)

• An S-expression is something that is either a
string or a list of S-expressions.

• So if it's a list, it could contain strings, or lists
of strings, or lists of lists of strings, etc.

• Think of it as a nested list, where there's no
bound on how deep the nesting can get.

• Another way of thinking of it is as a multi-way
tree, except that the data is all at the leaves
instead of in the interior nodes.

3

Some History

• An S-expression is a kind of nested list, that is, a list whose elements may
be other lists. Here is an informal history of S-expressions.

• S-expressions were invented by John McCarthy (1927-2011) for the
programming language Lisp in 1958. McCarthy invented Lisp to solve
problems in artificial intelligence.

• Lisp introduced lists, S-expressions, and parenthesized syntax. The syntax
of Lisp and its descendants, like Racket, is based on S-expressions.

• The use of S-expressions for syntax makes it easy to read and write
programs: all you have to do is balance parentheses. This is much simpler
than the syntax of other programming languages, which have semicolons
and other rules that can make programs harder to read.

• S-expressions are one of the great inventions of modern programming.
They were the original idea from which things like XML and JSON grew.

4

http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://www.ioccc.org/2011/akari/akari.c

Examples

"alice"
"bob"
"carole"
(list "alice" "bob")
(list (list "alice" "bob") "carole")
(list "dave"

(list "alice" "bob")
"carole")

(list (list "alice" "bob")
(list (list "ted" "carole")))

5

Here are some examples of S-
expressions, in list notation

(See Lesson 4.1)

Lesson 4.1 Lists.pptx

Examples

"alice"

"bob"

"carole"

("alice" "bob")

(("alice" "bob") "carole")

("dave" ("alice" "bob") "carole")

(("alice" "bob")

(("ted" "carole")))

6

Here are the same examples of
S-expressions, in write notation
(See Lesson 4.1). We often use

write notation because it is more
compact.

Lesson 4.1 Lists.pptx

An Sexp is either
-- a String (any string will do), or
-- an SexpList

An SexpList is either
-- empty
-- (cons Sexp SexpList)

Data Definition

7

Here we’ve built S-
expressions where the
basic data is strings, but
we could build S-
expressions of numbers,
cats, sardines, or
whatever. We’ll see that
later in this lesson.

This is mutual recursion

Sexp SexpList

8

may contain

may contain

may
contain

Data Structures

"alice"

"bob"

"carole"

("alice" "bob")

9

A list of S-expressions is
implemented as a singly-linked list.
Here is an example.

"alice" "bob"

Data Structures

(("alice" "bob") "carole")

10

"carole"

"alice" "bob"
Here is a slightly
more complicated
example. Observe
that the first of this
list is another list.
The first of the first
is the string "alice".

Data Structures (cont'd)

("alice"

(("alice" "bob") "carole")

"dave")

11

"carole"

"alice" "bob"

"alice" "dave"

Here is a still more
complicated example.

Observer Template: functions come in
pairs

;; sexp-fn : Sexp -> ??
;; slist-fn : SexpList -> ??

(define (sexp-fn s)
(cond

[(string? s) ...]
[else (... (slist-fn s))]))

(define (slist-fn sexps)
(cond

[(empty? sexps) ...]
[else (... (sexp-fn (first sexps))

(slist-fn (rest sexps)))]))

12

Remember: the shape of the program
follows the shape of the data

13

may contain

may contain

may
contain

Sexp SexpList

Shape of
the Data

Remember: the shape of the program
follows the shape of the data

14

may call

may call

may call

sexp-fn slist-fn

Shape of the
Program

One function, one task

• Each function deals with exactly one data
definition.

• So functions will come in pairs

• Write contracts and purpose statements
together, or

• Write one, and the other one will appear as a
wishlist function

15

occurs-in?

;; occurs-in? : Sexp String -> Boolean

;; returns true iff the given string occurs somewhere in
the given Sexp.

;; occurs-in-slist? : SexpList String -> Boolean

;; returns true iff the given string occurs somewhere in
the given list of Sexps.

16

Here's an example of a pair of
related functions: occurs-in? ,
which works on a Sexp, and
occurs-in-slist? , which works on
a SexpList.

Examples/Tests

(check-equal?

(occurs-in? "alice" "alice")

true)

(check-equal?

(occurs-in? "bob" "alice")

false)

(check-equal?

(occurs-in?

(list "alice" "bob")

"cathy")

false)

(check-equal?

(occurs-in?

(list (list "alice" "bob")

"carole")

"bob")

true)

(check-equal?

(occurs-in?

(list "alice"

(list (list "alice" "bob")

"dave")

"eve")

"bob")

true)
17

More Examples

;; number-of-strings-in-sexp : Sexp -> Number

;; number-of-strings-in-sexps : SexpList -> Number

;; returns the number of strings in the given Sexp or
SexpList.

;; characters-in-sexp : Sexp -> Number

;; characters-in-sexps : SexpList -> Number

;; returns the total number of characters in the strings
in the given Sexp or SexpList.

18

The S-expression pattern

Can do this for things other than strings:

An XSexp is either

-- an X

-- an XSexpList

A XSexpList is either

-- empty

-- (cons XSexp XSexpList)

19

The Template for XSexp

;; sexp-fn : XSexp-> ??
(define (sexp-fn s)

(cond
[(X? s) ...]
[else (slist-fn s)]))

;; slist-fn : XSexpList -> ??
(define (slist-fn sexps)

(cond
[(empty? sexps) ...]
[else (... (sexp-fn (first sexps))

(slist-fn (rest sexps)))]))

20

(first sexps) is a XSexp. This is mixed
data, so our rule about the shape of
the program following the shape of
the data tells us that we should
expect to wrap it in an (sexp-fn ...) .

Sexps with Sardines as the data

A SardineSexp is either

-- a Sardine

-- a SardineSexpList

A SardineSexpList is either

-- empty

-- (cons SardineSexp

SardineSexpList)

21

An example of the XSexp
pattern.

The Template for SardineSexp

;; sardine-sexp-fn : SardineSexp -> ??
(define (sardine-sexp-fn s)

(cond
[(sardine? s) ...]
[else (sardine-sexp-list-fn s)]))

;; sardine-sexp-list-fn : SardineSexpList -> ??
(define (sardine-sexp-list-fn sexps)

(cond
[(empty? sexps) ...]
[else (... (sardine-sexp-fn (first sexps))

(sardine-sexp-list-fn (rest sexps)))]))

22

Summary

• Nested Lists occur all the time

• Mutually recursive data definitions

• Mutual recursion in the data definition leads
to mutual recursion in the template

• Mutual recursion in the template leads to
mutual recursion in the code

23

Summary

• You should now be able to:

– Give examples of S-expressions

– Give some reasons why S-expressions are
important

– Write the data definition and template for S-
expressions

– Write functions on S-expressions using the
template

24

Next Steps

• Study the file 05-3-sexps.rkt in the Examples
folder

• If you have questions about this lesson, ask
them on the Discussion Board

• Do Guided Practice 5.3

• Go on to the next lesson

25

