
Multi-way Trees

CS 5010 Program Design Paradigms 
“Bootcamp”

Lesson 5.2

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/


Introduction

• We've talked about binary trees
• Sometimes, we need to construct trees in which 

each node has an unbounded number of sons.  
We call these multi-way trees.
– example: a file system, in which a directory can have 

any number of files or directories in it.
– an XML item.
– a JSON object is a multi-way tree (with additional 

structure, represented as a string).
– in this lesson, we'll do a case study of one application 

of multi-way trees.

2



Learning Objectives

• At the end of this lesson, the student should 
be able to:

– recognize situations in which a structure may have 
a component that is a list of similar structures

– write a data definition for such values

– write a template for such a structure

– write functions on such structures

3



Ancestor Trees

(define-struct person (name father mother))

;; A Person is either
;; --"Adam"
;; --"Eve"
;; --(make-person String Person Person)

;; person-fn : Person -> ???
(define (person-fn p)
(cond
[(adam? p) ...]
[(eve? p) ...]
[else (...

(person-name p)
(person-fn (person-father p))
(person-fn (person-mother p)))]))

4

Here are ancestor trees, 
an application of binary 
trees, which we saw 
before.   For this 
representation, we 
needed to introduce 
"adam" and "eve" as 
artificial "first people".



A Different Representation: 
Descendant Trees

;; A Person is represented as a struct

;; (make-person name children)

;; INTERPRETATION

;; name   :   String (any string will do)  --the name of the person

;; children : PersonList --the children of the

;;                                           person

;; IMPLEMENTATION:

(define-struct person (name children))

;; CONSTRUCTOR TEMPLATES:

;; For Person:

;;   (make-person String PersonList)

;; For PersonList:

;;   empty

;;   (cons Person PersonList)

5

Here is a different information 
analysis: instead of keeping track of 
each person's parents, let's keep 
track of each person's children.  A 
person may have any number of 
children, including no children.  So 
we can represent each person's 
children as a list of persons.
So now we have a pair of mutually-
recursive data definitions: Person
and PersonList



This is mutual recursion

Person             PersonList

6

defined in terms of 

defined in terms of 



Template: functions come in pairs

;; person-fn : Person -> ??

(define (person-fn p)

(... (person-name p) 

(plist-fn (person-children p))))

;; plist-fn : PersonList -> ??

(define (plist-fn ps)

(cond

[(empty? ps) ...]

[else (... (person-fn (first ps))

(plist-fn (rest ps)))]))

7

Here is the pair of 
templates that we 
get by applying the 
recipe to our data 
definition.

They are mutually recursive, 
as you might expect.



Remember: The Shape of the Program 
Follows the Shape of the Data

8

Data Hierarchy: Person
contains PersonList as a 
component; and 
PersonList has Person
as a component

Call Tree: person-fn
calls plist-fn, and 
plist-fn calls 
person-fn. 

Person PersonList

is-component-of

is-component-of

person-fn plist-fn

calls

calls



The template questions

;; person-fn : Person -> ??

(define (person-fn p)

(... (person-name p) 

(plist-fn (person-children p))))

;; plist-fn : PersonList -> ??

(define (plist-fn ps)

(cond

[(empty? ps) ...]

[else (... (person-fn (first ps))

(plist-fn (rest ps)))]))

9

And here are the 
template questions, as 

usual.

Given the answer for a person’s 
children, how do we find the 

answer for the person?

What’s the answer for 
the empty PersonList?

Given the answer for the first person in the list and the answer for the rest 
of the people in the list, how do we find the answer for the whole list?



Examples

(define alice (make-person "alice" empty))

(define bob (make-person "bob" empty))

(define chuck (make-person "chuck" (list alice bob)))

(define dave (make-person "dave" empty))

(define eddie

(make-person "eddie" (list dave)))

(define fred

(make-person 

"fred" 

(list chuck eddie)))

10

fred

chuck

alice

bob

eddie

dave



Vocabulary

• A tree where each node contains a list of 
subtrees is called a multi-way tree, a general 
tree, or sometimes a rose tree.

• Observe that the "base case" is a tree 
containing an empty list of subtrees.

11



Grandchildren

;; grandchildren : Person -> PersonList

;; GIVEN: a Person

;; RETURNS: a list of the grandchildren of the given

;; person.

;; EXAMPLE: (grandchildren fred) = (list alice bob dave)

;; STRATEGY: Use template for Person on p

(define (grandchildren p)

(... (person-children p)))

12

A: We need a function which, 
given a list of persons, produces 

a list of all their children

Here's a simple 
function we might 
want to write.  

Q: Given p’s children, how do 
we find p’s grandchildren?



all-children

;; all-children : PersonList -> PersonList

;; GIVEN: a list of persons

;; RETURNS: a list of all their children.

;; (all-children (list fred eddie)) 

;;  = (list chuck eddie dave)

(define (all-children ps)

(cond

[(empty? ps) empty]

[else (append

(person-children (first ps))

(all-children (rest ps)))]))

13

This one was too easy! 
It didn't require mutual 

recursion.

;; all-children : PersonList -> PersonList

;; GIVEN: a list of persons

;; RETURNS: a list of all their children.

;; (all-children (list fred eddie)) 

;;  = (list chuck eddie dave)

(define (all-children ps)

(cond

[(empty? ps) ...  ]

[else (...

(person-children (first ps))

(all-children (rest ps)))]))



Putting it together

;; grandchildren : Person -> PersonList

;; STRATEGY: Use template for Person on p

(define (grandchildren p)

(all-children (person-children p)))

;; all-children : PersonList -> PersonList

;; STRATEGY: Use template for PersonList on ps

(define (all-children ps)

(cond

[(empty? ps) empty]

[else (append

(person-children (first ps))

(all-children (rest ps)))]))

14



descendants

• Given a person, find all his/her descendants.

• What’s a descendant?

– a person’s children are his/her descendants.

– any descendant of any of a person’s children is 
also that person’s descendant.

• Hey:  this definition is recursive!

15

Here's a slightly 
harder task.



Contracts and Purpose Statements

;; person-descendants : Person -> PersonList

;; GIVEN: a Person

;; RETURNS: the list of his/her descendants

;; all-descendants : PersonList -> PersonList

;; GIVEN: a PersonList

;; RETURNS: the list of all their descendants

16

Here are the contracts and purpose 
statements.  
The task description talked about "all the 
descendants of a person's children".   A 
person's children are a list of persons, so that 
gives us a clue that we will need the function 
we've called all-descendants here.



Examples

(person-descendants fred) 

= (list chuck eddie alice bob dave)

(all-descendants (list chuck eddie)) 

= (list alice bob dave)

17

fred

chuck

alice

bob

eddie

dave



The template questions

;; person-fn : Person -> ??

(define (person-fn p)

(... (person-name p) 

(plist-fn (person-children p))))

;; plist-fn : PersonList -> ??

(define (plist-fn ps)

(cond

[(empty? ps) ...]

[else (... (person-fn (first ps))

(plist-fn (rest ps)))]))

18

And here are the 
template questions, as 

usual.

Given the answer for a person’s 
children, how do we find the 

answer for the person?

What’s the answer for 
the empty PersonList?

Given the answer for the first person in the list and the answer for the rest 
of the people in the list, how do we find the answer for the whole list?



;; Person -> PersonList
;; STRATEGY: Use template for Person on p
(define (person-descendants p)

(...
(person-children p)
(all-descendants (person-children p))))

;; PersonList -> PersonList
;; STRATEGY: Use template for PersonList on ps
(define (all-descendants ps)

(cond
[(empty? ps) ...  ]
[else (...

(person-descendants (first ps))
(all-descendants (rest ps)))]))

Function Definitions

;; Person -> PersonList
;; STRATEGY: Use template for Person on p
(define (person-descendants p)

(append
(person-children p)
(all-descendants (person-children p))))

;; PersonList -> PersonList
;; STRATEGY: Use template for PersonList on ps
(define (all-descendants ps)

(cond
[(empty? ps) empty]
[else (append

(person-descendants (first ps))
(all-descendants (rest ps)))]))

19

The answers come 
right from the 
definition!

We fill in the blanks 
in the template with 
the answers to the 
template questions.



Tests

(check-equal? 

(person-descendants fred) 

(list chuck eddie alice bob dave))

(check-equal? 

(all-descendants (list chuck eddie)) 

(list alice bob dave))

20



Are these good tests?

• Could a program fail these tests but still be 
correct? If so, how?

• Answer: Yes! It could produce the list of 
descendants in a different order, or with 
duplications.

21



Better Tests

(check same-people?

(person-descendants fred) 

(list chuck eddie alice bob dave))

(check same-people?

(person-descendants fred) 

(list chuck eddie alice dave bob))

(check same-people?

(all-descendants (list chuck eddie)) 

(list alice bob dave))

22

There are two ways we could solve this 
problem:
1. We could have our purpose statement 
specify the order in which the 
descendants are to be listed.
2. We could use smarter tests that would 
accept the answer list in any order.

Here we've adopted the second approach.  
Instead of check-equal?, we use check, 
which takes as its first argument a 
predicate to be used to compare the 
actual and expected answers.  We'll have 
to define a function same-people? .  
We've done this in the example file for 
this lesson.  And of course we have to 
have tests for same-people? ; otherwise 
we wouldn't have any reason to believe 
the results of the tests that rely on it.

Here are some tests for (person-
descendants fred) that list the answer in 
two different orders.



Summary

• You should now be able to:

– recognize situations in which a structure may have 
a component that is a list of similar structures

– write a data definition for such values

– write a template for such a structure

– write functions on such structures

23



Next Steps

• Study the file 05-2-descendants.rkt in the 
Examples folder

• If you have questions about this lesson, ask 
them on the Discussion Board

• Do Guided Practice 5.2

24




