
Non-Empty Lists

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 4.4

1
© Mitchell Wand, 2012-2014
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Lesson Introduction

• In this lesson, we'll learn about non-empty
lists, another example of recursive data.

2

Empty lists

• Most computations on lists make sense on
empty lists

– (sum empty) = 0

– (product empty) = 1

– (double-all empty) = empty

– etc, etc.

3

Non-empty lists

• But some computations don't make sense for
empty lists

– min, max

– average

4

Non-Empty Lists

• For these problems, the constructor and
observer templates for lists don't make sense,
either.

• For these problems, we can use a different
data definition that is suited for dealing with
lists that are always non-empty.

• Let's imagine we've defined a data type called
Sardine, and we want to work with non-empty
lists of Sardines.

5

Constructor Templates for Non-Empty
List of Sardines

;; Data Definition for NonEmptySardineList:

;; CONSTRUCTORS

;; (cons s empty) where s is a Sardine

;; (cons s ss)

;; where s is a Sardine

;; and ss is a NonEmptySardineList

6

Observer Template for Non-Empty List

;; nesl-fn : NonEmptySardineList -> ??

(define (nesl-fn ne-lst)

(cond

[(empty? (rest ne-lst)) (... (first ne-lst))]

[else (...

(first ne-lst)

(nesl-fn (rest ne-lst)))]))

7

(rest ne-lst) is a
NonEmptySardineList

so call nesl-fn on it

nesl-fn =
NonEmptySardineList-

Function ☺

Template Questions for Non-Empty
Lists

;; nesl-fn : NonEmptySardineList -> ??

(define (nesl-fn ne-lst)

(cond

[(empty? (rest ne-lst)) (... (first ne-lst))]

[else (...

(first ne-lst)

(nesl-fn (rest ne-lst)))]))

8

What is the answer for
a list of length 1?If we knew the answer for the rest of the list,

and we knew the first of the list, how could
we combine them to get the answer for the

whole list?

Non-Empty Lists: The General Pattern

CONSTRUCTOR TEMPLATES for NonEmptyXList

-- (cons X empty)

-- (cons X NonEmptyXList)

9

In your assignments, you don't need to write
down a separate interpretation for

NonEmptyXList; a NonEmptyXList always
represents a non-empty sequence of X's in

the standard way.

Template Questions for Non-Empty
Lists

;; nelst-fn : NonEmptyXList -> ??

(define (nelst-fn ne-lst)

(cond

[(empty? (rest ne-lst)) (.... (first ne-lst))]

[else (...

(first ne-lst)

(nelst-fn (rest ne-lst)))]))

10

What is the answer for
a list of length 1?If we knew the answer for the rest of the list,

and we knew the first of the list, how could
we combine them to get the answer for the

whole list?

Example: max

;; intlist-max : NonEmptyListOfInteger -> Integer

;; GIVEN: a non-empty list of integers,

;; RETURNS: the largest element of the list

(define (intlist-max ne-lst)

(cond

[(empty? (rest ne-lst)) (first ne-lst)]

[else (max

(first ne-lst)

(intlist-max (rest ne-lst)))]))

11

Example: average

nl-avg : NonEmptyNumberList -> Number

Given a non-empty NumberList, returns its average

(nl-avg (cons 11 empty)) = 11

(nl-avg (cons 33 (cons 11 empty))) = 22

(nl-avg (cons 33 (cons 11 (cons 11 empty)))) = 55/3

12

Example: average

;; nl-avg : NonEmptyNumberList -> Number

;; Given a non-empty NumberList, returns its average

;; strategy: use template for NonEmptyNumberList

(define (nl-avg ne-lst)

(cond

[(empty? (rest ne-lst)) (first ne-lst)]

[else (....

(first ne-lst)

(nl-avg (rest ne-lst)))]))

13

If we knew the answer for the rest of the list,
and we knew the first of the list, how could
we combine them to get the answer for the

whole list?

But wait: there's no way to answer
that question!

• (nl-avg (list 33 11 11)) = 55/3

 (... 33 11) = 55/3

• (nl-avg (list 33 11)) = 22

 (... 33 11) = 22

• Can't have both!

14

11

Here are two lists. They have the
same first element (33), and the
average of their rests is the same (11).
But they have different averages. So
there's no way to combine 33 and 11
that will give the right answer for both
examples. So simply using the
template can't possibly work.

Try something simpler!

nl-avg : NonEmptyNumberList -> Number

Given a non-empty NumberList, returns its average

Strategy: combine simpler functions

(define (nl-avg lst)

(/ (nl-sum lst) (nl-length lst)))

15

Here we had a problem that could not be
solved by blindly following the template.
But we could still solve it by dividing it into
simpler pieces and combining the answers for
the pieces. Watch out for situations like this!

Remember, don't use non-empty lists
unless you really need to

• The vast majority of problems make sense for
the empty list.

• Make your data definitions in the form XList if
that makes sense (even if the list in the
problem never happens to be empty).

• If you're using a NonEmptyXList template, and
you have duplicated code, that's a sign that it
should be a plain old XList.

16

Summary

• You should now be able to explain the
difference between a list of items and a non-
empty list of items

• You should be able to write down the
template for a non-empty list and use it.

17

Next Steps

• Study 04-3-non-empty-lists.rkt in the
Examples folder.

• If you have questions about this lesson, ask
them on the Discussion Board.

• Go on to the next lesson.

18

