
Lists of Structures

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 4.3

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Introduction

• Lists of structures occur all the time

• Programming with these is no different:

– write down the data definition, including
interpretation and template

– Follow the Recipe!

2

Learning Objectives

• At the end of this lesson you should be able
to:

– write down a template for lists of compound data

– use the template to write simple functions on lists
of compound data

3

Programming with lists of structures

• Programming with lists of structures is no
different from programming with lists of
scalars, except that we make one small change
in the recipe for templates

4

Example: modeling a bookstore

• Let's imagine a program to help manage a
bookstore.

• Let’s build a simple model of the inventory of
a bookstore.

5

Step 1: Data Design

• First, we’ll give data definitions for the various
quantities we need to represent:

6

Preliminary Data Definitions

;; An Author is represented as a String (any string will do)

;; A Title is represented as a String (any string will do)

;; An International Standard Book Number (ISBN) is represented
;; as a positive integer (PosInt).

;; A DollarAmount is represented as an integer.
;; INTERP: the amount in USD*100.
;; eg: the integer 3679 represents the dollar amount $36.79
;; A DollarAmount may be negative.

7

We might refine this definition later, eg keep track of
FirstName, LastName, etc.

Actually, an ISBN is a sequence of exactly 13 digits, divided into four
fields (see
https://en.wikipedia.org/wiki/International_Standard_Book_Number).
We don't need to represent all this information, so we will simply
represent it as a PosInt.

BookStatus

;; A BookStatus is represented as
;; (book-status isbn author title cost price on-hand)

;; INTERP:
;; isbn : ISBN -- the ISBN of the book
;; author : Author -- the book's author
;; title : Title -- the book's title
;; cost : DollarAmount -- the wholesale cost of the book (how much
;; the bookstore paid for each copy of the
;; book
;; price : DollarAmount -- the price of the book (how much the
;; bookstore charges a customer for the
;; book)
;; on-hand: NonNegInt -- the number of copies of the book that are
;; on hand in the bookstore)

8

Note that we are not modelling a Book
(that’s something that exists on a shelf
somewhere ☺). We are modelling the

status of all copies of this book.

BookStatus (cont’d)

;; IMPLEMENTATION:
(define-struct book-status (isbn author title cost price on-hand))

;; CONSTRUCTOR TEMPLATE:
;; (make-book-status ISBN Author Title DollarAmount DollarAmount NonNegInt)

;; OBSERVER TEMPLATE:
;; book-status-fn : BookStatus -> ??
(define (book-status-fn b)

(...
(book-status-isbn b)
(book-status-author b)
(book-status-title b)
(book-status-cost b)
(book-status-price b)
(book-status-on-hand b)))

9

Inventory

;; An Inventory is represented as a list of
;; BookStatus, in increasing ISBN order, with at
;; most one entry per ISBN.

;; CONSTRUCTOR TEMPLATES:
;; empty
;; (cons bs inv)
;; -- WHERE
;; bs is a BookStatus
;; inv is an Inventory
;; and
;; (bookstatus-isbn bs) is less than the ISBN of
;; any book in inv.

10

Inventory (cont’d)

;; OBSERVER TEMPLATE:

;; inv-fn : Inventory -> ??

(define (inv-fn inv)

(cond

[(empty? inv) ...]

[else (...

(first inv)

(inv-fn (rest inv)))]))

11

Inventory (cont’d)

(define (inv-fn inv)

(cond

[(empty? inv) ...]

[else (...

(book-status-fn (first inv))

(inv-fn (rest inv)))]))

12

Since (first inv) is a BookStatus, it would
also be OK to write the observer template
like this. These templates are there to
serve as a guide for you, so we are going
to try not to be too picky about them.

But you must put the recursive call to
inv-fn in your observer template.

is-component-of

Remember: The Shape of the Program
Follows the Shape of the Data

13

Data Hierarchy (a
non-empty inventory
contains a
BookStatus and
another Inventory)

Call Tree (inv-fn
calls itself and
book-status-fn)

callsInventory

BookStatus

inv-fn

book-
status-fn

Example function: inventory-authors

;; inventory-authors : Inventory -> AuthorList
;; GIVEN: An Inventory
;; RETURNS: A list of the all the authors of the books in the
;; inventory. Repetitions are allowed. Books with no copies in stock
;; are included. The authors may appear in any order.
;; EXAMPLE: (inventory-authors inv1)

= (list "Felleisen" "Wand" "Shakespeare" "Shakespeare")
;; STRATEGY: Use observer template for Inventory

(define (inventory-authors inv)
(cond

[(empty? inv) empty]
[else (cons

(book-status-author (first inv))
(inventory-authors (rest inv)))]))

14

An Inventory– but which inventory?

• So far we've decided how to represent an
inventory.

• But what store is it the inventory of?

• And what date does it represent?

15

BookstoreState

;; A Date is represented as a

;; A BookstoreState is represented as a (bookstore-state date stock)
;; INTERP:
;; date : Date -- the date we are modelling
;; stock : Inventory -- the inventory of the bookstore as of 9am ET on
;; the given date.

;; IMPLEMENTATION:

(define-struct bookstore-state (date stock))

;; CONSTRUCTOR TEMPLATE
;; (make-bookstore-state Date Inventory)

;; OBSERVER TEMPLATE
;; state-fn : BookstoreState -> ??
(define (state-fn bss)
(... (bookstore-state-date bss)

(bookstore-state-stock bss)))

16

Now that we have a history of the
inventory, we can do more things,

like track the value of the
inventory over time, compare the

sales of some book over some
time period, etc., etc.

Module Summary: Self-Referential or
Recursive Information

• Represent arbitrary-sized information using a
self-referential (or recursive) data definition.

• Self-reference in the data definition leads to
self-reference in the observer template.

• Self-reference in the observer template leads
to self-reference in the code.

• Writing functions on this kind of data is easy:
just Follow The Recipe!

• But get the template right!

17

Summary

• At the end of this lesson you should be able
to:

– write down a template for lists of compound data

– use the template to write simple functions on lists
of compound data

• The Guided Practices will give you some
exercise in doing this.

18

Next Steps

• Study 04-2-books.rkt in the Examples file

• If you have questions about this lesson, ask
them on the Discussion Board

• Do Guided Practice 4.4

• Go on to the next lesson

19

