
Lists

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 4.1

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Module 04

2

Basic Principles

Designing
Data

Designing
Functions

Designing
Systems

Tools and
Techniques

Computing
with Lists

Computing
with Trees

and Graphs

Designing
with

Invariants

Thinking
about

Efficiency

Object-Oriented
Programming

Interfaces
and Classes

Inheritance

Objects with
Mutable

State

Efficiency,
Part 2

Module Introduction

• This week, we will learn about list data, which
is a natural representation for sequences.

• We will learn about

– the arithmetic of lists

– the observer template for list data

– lists of structures

3

Learning Objectives for Lesson 4.1

At the end of this lesson, you should be able to:
• Write down a data definition for information

represented as a list
• Notate lists using constructor, list, and write

notations.
• Explain how lists are represented as singly-linked

data structures, and how cons, first, and rest
work on these structures

• Calculate with the basic operations on lists: cons,
first, and rest .

4

So let’s get started...

Sequence Information

• a phone book, which is a sequence of listings

• a presentation, which is a sequence of slides

• In Racket, these can be represented as lists.

– for some applications, there are more efficient
representations, but we’ll start with lists.

5

Lists: A Handy Representation for
Sequences

• Sequences of data items arise so often that
Racket has a standard way of representing
them.

• Sequence information in Racket is most often
represented by lists.

• These are implemented as singly-linked lists,
which you should have learned about in your
data structures course.

6

Example Data Definition for Sequence
Data

;; DATA DEFINITION:

;; A NumberSeq is represented as a list of Number.
;; CONSTRUCTOR TEMPLATES:
;; empty -- the empty sequence
;; (cons n ns)
;; WHERE:
;; n is a Number -- the first number
;; in the sequence
;; ns is a NumberSeq -- the rest of the
;; numbers in the sequence

7

There are many ways to represent a sequence of numbers. Here
we’ve chosen to represent a sequence as a singly-linked list.

empty and cons are built
into Racket. We don’t need
any define-structures for
them

There are two ways to build a NumberSeq, so
we have two constructor templates.
We’ll deal with the observer template in the
next lesson.

We must give an interpretation for
each possible NumberSeq.

Examples of NumberSeq:

empty

(cons 11 empty)

(cons 22 (cons 11 empty))

(cons 33 (cons 22 (cons 11 empty)))

(cons 33 empty)

8

A NumberSeq is one of:
-- empty
-- (cons Number

NumberSeq)

Here are some examples of NumberSeqs.

empty is a NumberSeq by the data definition.

(cons 11 empty) is a NumberSeq because 11 is a number
and empty is a NumberSeq.

(cons 22 (cons 11 empty)) is a NumberSeq because 22 is a
number and (cons 11 empty) is a NumberSeq.
And so on.

DigitSequence

A Digit is one of

"0" | "1" | "2" | ... | "9"

A DigitSequence (Dseq) is represented

as a listof Digit.

CONSTRUCTOR TEMPLATES:

-- empty

-- (cons Digit DSeq)

9

Let's do it again, this time with digits.

We define a Digit to be one of the
strings "0", "1", etc., through "9".

A DigitSequence (DSeq) is either
empty or the cons of a Digit and a
DSeq.

Examples of DSeqs
empty

(cons "3" empty)

(cons "2" (cons "3" empty))

(cons "4" (cons "2" (cons "3" empty)))

• These are not DSeqs:

(cons 4 (cons "2" (cons "3" empty)))

(cons (cons "3" empty)

(cons "2" (cons "3" empty)))

10

A DigitSequence (DSeq) is one of:
-- empty
-- (cons Digit DSeq)

Can you explain why each of the first 4
examples are DSeq’s, according to the

data definition?
Can you explain why the last two are

not Dseq’s?

These data definitions are self-
referential

A NumberSeq is one of:

-- empty

-- (cons Number NumberSeq)

11

The data definition for NumberSeqs contains something we haven't seen
before: self-reference.
The second constructor uses NumberSeq, even though we haven't finished
defining NumberSeqs yet. That's what we mean by self-reference.
In normal definitions, this would be a problem: you wouldn’t like a dictionary
that did this.
But self-reference the way we've used it is OK. We've seen in the examples how
this works: once you have something that you know is a NumberSeq, you can
do a cons on it to build another NumberSeq. Since that's a NumberSeq, you can
use it to build still another NumberSeq.
We also call this a recursive data definition.

This one is self-referential, too

A Digit is one of

"0" | "1" | "2" | ... | "9"

A DigitSequence (DSeq) is one of:

-- empty

-- (cons Digit DSeq)

12

How Lists Represent Sequences

• If X is some data definition, we define a list of X's as either
empty or the cons of an X and a list of X's.

• So a list of sardines is either empty or the cons of a sardine
and a list of sardines.

• The interpretation is always "a sequence of X's".
– empty represents a sequence with no elements
– (cons x lst) represents a sequence whose first element is x and

whose other elements are represented by lst.

• If we had some information that we wanted to represent as
a list of X's (say a list of people), we would have to specify
the order in which the X's appear (say "in increasing order
of height"), or else say “in any order.”

13

The constructor template for list data

CONSTRUCTOR TEMPLATES for XList

-- empty

interp: a sequence of X's with no elements

-- (cons X XList)

interp: (cons x xs) represents a sequence of X's

whose first element is x and whose

other elements are represented by xs.

14

We use xs (pronounced
"ex's") as the plural of "x".

We’ve written XList here, but there
is no such thing as an XList. There
are only NumberLists, or DigitLists,
or SardineLists. We’ll write XList
when we mean a list of X’s for some
X, but we don’t care which it is.

Collection Information

• Sometimes we are interested in representing a
set, which may not have a built-in notion of
order
– a space-invaders game with many invaders

– a book-store inventory with many books

• You can use lists to represent these as well.
– You will need to specify the order (or lack thereof)

– This will be part of the data definition

15

Example Data Definition for Collection
Information

;; An Inventory is represented as a list of BookStatus,
;; in increasing ISBN order, with at most one entry per
;; ISBN.

;; CONSTRUCTOR TEMPLATES

;; empty
;; (cons bs inv)

-- WHERE
bs is a BookStatus
inv is an Inventory
and
(bookstatus-isbn bs) is less than the ISBN
of any book in inv.

16

Note that here we've put the constraints
on order and multiplicity right in the data
definition.

List Notation

• There are several ways to write down lists.
• We've been using the constructor notation, since

that is the most important one for use in data
definitions.

• The second most important notation we will use
is list notation. In Racket, this is the standard
notation in the Intermediate Student Language.

• Internally, lists are represented as singly-linked
lists.

• On output, lists may be notated in write notation.

17

Examples of List Notation

18

11 22 33

Internal representation:

(list 11 22 33)List notation:

(cons 11
(cons 22

(cons 33
empty))))

Constructor notation:

(11 22 33)write-style (output only):

Implementation of cons

19

22 33

lst

11

(cons 11 lst)

lst = (list 22 33)

(cons 11 lst) = (list 11 22 33)

Now that we've seen the internal
representation of lists, we can see how
cons creates a new list: it simply adds a
new node to the front of the list. This
operation takes a short, fixed amount
of time.

Operations on Lists

empty? : XList -> Boolean

Given a list of X's, returns true
iff the list is empty

20

Racket provides 3 functions for inspecting
lists and taking them apart. These are
empty? , first, and rest.

The predicate empty? returns true if and
only if the list is empty.

Operations on Lists

first : XList -> X

GIVEN: a non-empty list of X’s

RETURNS: the first element in the
list.

21

When we write down the
template for lists, we will see
that when we call first, its
argument will always be non-
empty.

Operations on Lists

rest : XList -> XList

GIVEN: a non-empty list of X’s.

RETURNS: the list of all its
elements except the first

22

When we write down the
template for lists, we will see
that when we call rest, its
argument will always be non-
empty.

Examples

(empty? empty) = true

(empty? (cons 11 empty)) = false

(empty? (cons 22 (cons 11 empty))) = false

(first (cons 11 empty)) = 11

(rest (cons 11 empty)) = empty

(first (cons 22 (cons 11 empty))) = 22

(rest (cons 22 (cons 11 empty))) = (cons 11 empty)

(first empty) Error! (Precondition failed)

(rest empty) Error! (Precondition failed)

23

Implementation of first and rest

24

22 33

lst2

11

lst2 = (list 11 22 33)
(first lst2) = 11
(rest lst2) = (list 22 33)

(first lst2)

(rest lst2)

first and rest simply follow
a pointer in the singly-
linked data structure.

Properties of cons, first, and rest

(first (cons v l)) = v

(rest (cons v l)) = l

If l is non-empty, then

(cons (first l) (rest l)) = l

25

Here are some useful facts about
first, rest, and cons. Can you see
why they are true?

These facts tell us that if we want to build a
list whose first is x and whose rest is lst, we
can do this by writing (cons x lst).

Summary

At this point, you should be able to:
• Write down a data definition for information

represented as a list
• Notate lists using constructor, list, and write

notations.
• Explain how lists are represented as singly-linked

data structures, and how cons, first, and rest
work on these structures

• Calculate with the basic operations on lists: cons,
first, and rest .

26

Next Steps

• If you have questions about this lesson, ask
them on the Discussion Board

• Do Guided Practices 4.1 and 4.2

• Go on to the next lesson

27

