
How to Design Systems

CS 5010 Program Design Paradigms 
“Bootcamp”

Lesson 3.1

1
© Mitchell Wand, 2012-2015
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/


Module 03

2

Basic Principles

Designing 
Data

Designing 
Functions

Designing 
Systems

Tools and 
Techniques

Computing 
with Lists

Computing 
with Trees 

and Graphs

Designing 
with 

Invariants

Thinking 
about 

Efficiency

Object-Oriented 
Programming

Interfaces 
and Classes

Inheritance

Objects with 
Mutable 

State

Efficiency, 
Part 2



Module Introduction

• In this module, we will learn about the System 
Design Recipe, which gives you a recipe for 
building programs with multiple functions

• We will learn how to do “iterative 
refinement”– that is, adding features to a 
program.

• We will illustrate the recipe by building 3 
versions of a simple animation, using the 
Racket 2htdp/universe module.

3



Learning Objectives for this lesson

• At the end of this lesson, students should be able 
to:
– Explain the steps of the System Design Recipe

– Use the 2htdp/universe module to create a simple 
interactive animation, including:
• Analyzing data to determine whether it should be constant 

or part of the world state,

• Writing data definitions for worlds, key events, and mouse 
events, and

• Writing code to handle the various events during the 
animation. 

4



The System Design Recipe

• The Function Design Recipe gave you a recipe 
(a “workflow”) to help you organize the design 
of a single function.

• The System Design Recipe gives you a 
workflow to help you get and stay organized 
when you need to build a system consisting of 
many functions.

• Here it is:

5



The System Design Recipe

1. Write a purpose statement for your system.

2. Design data to represent the relevant information in the 
system.

3. Make a wishlist of main functions.  Write down their 
contracts and purpose statements.

4. Design the individual functions. Maintain a wishlist of 
functions you will need to write.

The System Design Recipe

6



Purpose Statement for a Traffic Light 
simulation

• The light is a machine that responds to time passing; as 
time passes, the light goes through its cycle of colors.

• The state of the machine consists of its current color 
and the amount of time (in ticks) until the next change 
of color.  At every tick, the amount of time decreases 
by 1.  

• When the timer reaches 0, the light goes to its next 
color (from green to yellow, from yellow to red,  from 
red to green), and the timer is reset to the number of 
ticks that light should stay in its new color.  

• In addition, the traffic light should be able to display 
itself as scene, perhaps something like this

7



A second example: The Falling Cat 
Purpose Statement

• We will produce an animation of a falling cat.

• The cat will starts at the top of the canvas, and 
fall at a constant velocity.

• If the cat is falling, hitting the space bar should 
pause the cat.

• If the cat is paused, hitting the space bar 
should unpause the cat.

8



falling-cat.rkt demo

YouTube link 9

https://www.youtube.com/watch?v=ojHukwW-vuw


The 2htdp/universe module

• We can build interactive systems like this using 
the 2htdp/universe module.

• This module expects the system to be expressed 
as a machine.

• The machine will have some state.

• The machine can respond to inputs.

• The machine’s response to input is described as a 
function.

• The machine can show its state as a scene.

10



Step 2: Information Analysis

• What are the states of the machine?

• What are the inputs?

• What is the machine’s response to each input?

– What state should the machine go to after each 
input?

• How would we like to display the state of the 
machine?

11



• The state of the traffic light is compound information:
– its current color AND # of ticks until next change

• Inputs will be the time (ticks). At every tick, the timer is 
decremented.

• When the timer reaches 0, the light goes to its next 
color (from green to yellow, from yellow to red,  from 
red to green), and the timer is reset to the number of 
ticks that light should stay in its new color. 

• The traffic light can show its state as a scene, perhaps 
something like this:

Information Analysis for the Traffic 
Light

12

Except for the display, this 
is what we did in traffic-
light-with-timer2.rkt



Information Analysis for the Falling Cat

• There are the only two things that change as 
the animation progresses: the position of the 
cat, and whether or not the cat is paused.  So 
that’s what we put in the state:

• The state of the machine will consist of:

– an integer describing the y-position of the cat.

– a Boolean describing whether or not the cat is 
paused

13



Let’s work out the Falling Cat example 
in detail...

14



Step 2 for the Falling Cat:
Data Design

;; REPRESENTATION:
;; A World is represented as (make-world pos paused?) 
;; with the following fields:
;; pos : Integer    the y-position of the center of the cat in the
;;                      scene
;; paused? : Boolean    tells whether or not the cat is paused

;; IMPLEMENTATION
(define-struct world (pos paused?))

;; CONSTRUCTOR TEMPLATE
;; (make-world Integer Boolean)

;; OBSERVER TEMPLATE
;; world-fn : World -> ??
(define (world-fn w)
(... (world-pos w)

(world-paused? w)))

15



Falling Cat 1:
Information Analysis, part 2

• What inputs does the cat respond to?

• Answer: it responds to time passing and to key 
strokes

16



What kind of Key Events does it 
respond to?

• It responds to the space character, which is 
represented by the string " " that consists of a 
single space.

• All other key events are ignored.

17



Next, make a wishlist

• What functions will we need for our 
application?

• Write contracts and purpose statements for 
these functions.

• Then design each function in turn.

18



Wishlist (1): How does it respond to 
time passing?

We express the answer as a function:

;; world-after-tick: World -> World

;; RETURNS: the world that should

;; follow the given world after a 

;; tick.

19



Wishlist (2): How does it respond to 
key events?

;; world-after-key-event :

;;   World KeyEvent -> World

;; RETURNS: the world that should follow the given world

;; after the given key event.

;; on space, toggle paused?-- ignore all others

Here we've written the purpose 
statement in two parts.  The first 

is the general specification 
("produces the world that 

should follow the given world 
after the given key event"), and 

the second is a more specific 
statement of what that world is.

20



Wishlist (3)

• We also need to render the state as a scene:

;; world-to-scene : World -> Scene

;; RETURNS: a Scene that portrays the given 

;; world. 

Another response described 
as a function!

21



Wishlist (4): Running the world

;; main : Integer -> World

;; GIVEN: the initial y-position in the cat

;; EFFECT: runs the simulation, starting with the cat

;;  falling

;; RETURNS: the final state of the world

Here the function has an effect in the real 
world (like reading or printing).  We  
document this by writing an EFFECT 

clause in our purpose statement.

For now, functions like main will be our only 
functions with real-world effects. All our 

other functions will be pure:  that is, they 
compute a value that is a mathematical 

function of their arguments.  They will not 
have side-effects.

Side-effects make it much more difficult to 
understand what a function does.  We will 

cover these much later in the course.

22



Next: develop each of the functions

;; world-after-tick : World -> World

;; RETURNS: the world that should follow the given

;; world after a tick

;; EXAMPLES: 

;; cat falling:

;; (world-after-tick unpaused-world-at-20) 

;;  = unpaused-world-at-28

;; cat paused:

;; (world-after-tick paused-world-at-20) 

;;  = paused-world-at-20

We add some examples.  We've included some 
commentary and used symbolic names so the 
reader can see what the examples illustrate.

23



Choose strategy to match the data

• World is compound, so use the template for 
World

;; strategy: use template for World on w

(define (world-after-tick w)

(... (world-pos w) (world-paused? w)))

• What goes in ... ?

• If the world is paused, we should return w
unchanged.  Otherwise, we should return a world 
in which the cat has fallen CATSPEED pixels.

24



Function Definition

;; STRATEGY: Use template for World on w

(define (world-after-tick w)

(if (world-paused? w)

w

(make-world 

(+ (world-pos w) CATSPEED)

(world-paused? w))))

Here we’ve just written out 
the function because it was so 
simple.  If it were any more 
complicated, we might break 
it up into pieces, as on the 
next slide.

A more complete description of our strategy might be

STRATEGY: Use template for World on w, then cases on 
whether w is paused.

You don’t have to be so detailed.  
25



Alternative Function Definition

;; STRATEGY: Cases on whether the world is paused.

(define (world-after-tick w)

(if (world-paused? w)

(paused-world-after-tick w)

(unpaused-world-after-tick w))

Here we’ve broken the definition into pieces.  If either 
of the pieces is complicated, this would be better code 
than what we saw on the preceding slide.

26



Tests

(define unpaused-world-at-20 (make-world 20 false))  
(define paused-world-at-20   (make-world 20 true))
(define unpaused-world-at-28 (make-world (+ 20 CATSPEED) false))  
(define paused-world-at-28   (make-world (+ 20 CATSPEED) true))

(begin-for-tests
(check-equal? 

(world-after-tick unpaused-world-at-20) 
unpaused-world-at-28
"in unpaused world, the cat should fall CATSPEED pixels and world should 
still be unpaused")

(check-equal? 
(world-after-tick paused-world-at-20)
paused-world-at-20
"in paused world, cat should be unmoved"))

27



How does it respond to key events?

;; world-after-key-event : 
;;    World KeyEvent -> World
;; GIVEN: a world w
;; RETURNS: the world that should follow the given world
;; after the given key event.
;; on space, toggle paused?-- ignore all others
;; EXAMPLES: see tests below
;; STRATEGY: cases on kev : KeyEvent

(define (world-after-key-event w kev)
(cond
[(key=? kev " ")
(world-with-paused-toggled w)]

[else w]))

We make a decision based on 
kev, and pass the data on to a 
help function to do the real work.

28



Requirements for Helper Function

;; world-with-paused-toggled : World -> World

;; RETURNS: a world just like the given one, but with 

;;          paused? toggled

If this helper function does what it's 
supposed to, then world-after-key-event
will do what it is supposed to do.

29



Tests for world-after-key-event (1)

;; for world-after-key-event, we have 4 
;; equivalence classes: all combinations of: 
;; a paused world and an unpaused world, 
;; and a "pause" key event and a "non-pause" key
;; event

;; Give symbolic names to "typical" values:
;; we have these for worlds, 
;; now we'll add them for key events:
(define pause-key-event " ")
(define non-pause-key-event "q")

30



Tests (2)

(check-equal?
(world-after-key-event 

paused-world-at-20 pause-key-event)
unpaused-world-at-20
"after pause key, paused world should become unpaused")

(check-equal?
(world-after-key-event 

unpaused-world-at-20 pause-key-event)
paused-world-at-20
"after pause key, unpaused world should still be paused")

31



Tests (3)

(check-equal?
(world-after-key-event 

paused-world-at-20 non-pause-key-event)
paused-world-at-20
"after a non-pause key, paused world should be
unchanged")

(check-equal?
(world-after-key-event 

unpaused-world-at-20 non-pause-key-event)
unpaused-world-at-20
"after a non-pause key, unpaused world should be
unchanged")

32



Tests (4)

(define (world-after-key-event w kev) ...)

(begin-for-test
(check-equal? ...)
(check-equal? ...)    
(check-equal? ...)
(check-equal? ...))

(define (world-with-paused-toggled? w) ...)

Here's how we lay out 
the tests in our file.

Contract, purpose 
function, etc., for 
world-with-paused-
toggled?

33



Now we're ready to design our help 
function

34



Definition for Helper Function

;; world-with-paused-toggled : World -> World

;; RETURNS: a world just like the given one, but with 

;;  paused? toggled

;; STRATEGY: Use template for World on w

(define (world-with-paused-toggled w)

(make-world

(world-pos w)

(not (world-paused? w))))
Don't need to test this 
separately, since tests for  
world-after-key-event
already test it.

35



What else is on our wishlist?

;; world-to-scene : World -> Scene
;; RETURNS: a Scene that portrays the given world.
;; EXAMPLE: 
;; (world-to-scene (make-world 20 ??))
;;  = (place-image CAT-IMAGE CAT-X-COORD 20 EMPTY-CANVAS)
;; STRATEGY: Place the image of the cat on an empty canvas
;;           at the right position.

(define (world-to-scene w)
(place-image CAT-IMAGE CAT-X-COORD

(world-pos w)
EMPTY-CANVAS))

We could have written "use 
template for World on w", but this 
is clear and much more 
informative.

36

place-image was covered in Lesson 0.4.  You can 
find a refresher in the Resources section of this 
module.



Testing world-to-scene

;; an image showing the cat at Y = 20
;; check this visually to make sure it's what you want
(define image-at-20 (place-image CAT-IMAGE CAT-X-COORD 20 EMPTY-CANVAS))

;; these tests are only helpful if image-at-20 is the right image.

(begin-for-test
(check-equal? 

(world->scene unpaused-world-at-20)
image-at-20
"(world-to-scene unpaused-world-at-20) should display as image-at-20")

(check-equal?
(world->scene paused-world-at-20)
image-at-20
"(world-to-scene paused-world-at-20) should display as image-at-20"))

37



Last wishlist item

;; main : Integer -> World
;; GIVEN: the initial y-position in the cat
;; EFFECT: runs the simulation, starting with the cat
;;  falling
;; RETURNS: the final state of the world

The real purpose of main is not to return a 
useful value; instead, its purpose is have 
some visible effect in the real world– in 
this case, to display some things on the 
real screen and take input from the real 
user.  We document this in the purpose 
statement by writing an EFFECT clause.

38



Template for big-bang

;; big-bang 
;; EFFECT : runs a world with the specified event handlers.  
;; RETURNS: the final state of the world
(big-bang

initial-world
(on-tick tick-handler rate)
(on-key  key-handler)
(on-draw render-fcn)))

names of events
functions for 

responses

frame rate in 
secs/tick

There are other events that big-bang 
recognizes. See the Help Desk for details

39



Putting the pieces together

;; main : Integer -> World

;; GIVEN: the initial y-position in the cat

;; EFFECT: runs the simulation, starting with the cat

;;  falling

;; RETURNS: the final state of the world

;; STRATEGY: Combine simpler functions

(define (main initial-pos)

(big-bang (make-world initial-pos false)

(on-tick world-after-tick 0.5)

(on-key world-after-key-event)

(on-draw world-to-scene)))

Here the simpler functions 
are big-bang, world-after-
tick, world-after-key-event, 
and world-to-scene

40



Let's walk through falling-cat.rkt

• Note: this video differs from our current 
technology in a couple of ways:
– it talks about test suites; these are replaced by begin-

for-test.

– it talks about "partition data" and gives a template for 
FallingCatKeyEvents.  We've simplified the 
presentation-- now we just have KeyEvents, which are 
scalars (no template needed), and we take them apart 
using the "Cases" strategy.

– And remember, the “Structural Decomposition” 
strategy is now called “Use template”.

41



falling-cat.rkt readthrough

YouTube link 42

https://www.youtube.com/watch?v=ahAoFZVVqio


The System Design Recipe

• Let's review the System Design Recipe

• Go back and look at our development of 03-1-
falling-cat.rkt to see how it matched the 
recipe.

43



The System Design Recipe

1. Write a purpose statement for your system.

2. Design data to represent the relevant information in the 
system.

3. Make a wishlist of main functions.  Write down their 
contracts and purpose statements.

4. Design the individual functions. Maintain a wishlist of 
functions you will need to write.

One more time...

44



Summary

• We built a system using the system design 
recipe. 

• We used the universe module, which provides 
a way of creating and running an interactive 
machine.
– Machine will have some state.

– Machine can respond to inputs.

– Response to input is described as a function.

– Machine can show its state as a scene.

45



Next Steps

• Study the file 03-1-falling-cat.rkt in the 
Examples folder.

• If you have questions about this lesson, ask 
them on the Discussion Board

• Do Guided Practice 3.1

• Go on to the next lesson

46




