
Working with images and scenes

CS 5010 Program Design Paradigms
“Bootcamp”

1
© Mitchell Wand, 2012-2014
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Lesson Introduction

• Racket has a rich library for working with
images and scenes.

• We will use this library extensively in this
course.

• In this lesson, we will explore a few things
from the library.

• Note: this lesson is mostly review from Lesson
0.4

2

Learning Objectives

• At the end of this lesson, the student should
be able to:

– Create simple images and scenes

– Combine simple images into more complex
images and scenes

– Determine the properties of an image

– Test images and their properties

3

Images are Scalar Data

• In Racket, images are scalar data

• Racket has:

– Functions for creating images

– Functions for combining images

– Functions for finding properties of images

• In general, we build complex images by
starting with simple images and then
combining them using functions.

4

Loading the image library

To load the image library, include the line

(require 2htdp/image)

in your program.

5

Functions for Creating Images (1)

bitmap : String -> Image

GIVEN: the name of a file containing an image in
.png or .jpg format

RETURNS: the same image as a Racket value.

6

Functions for Creating Images (2)

rectangle :

Width Height Mode Color -> Image

GIVEN: a width and height (in pixels), a mode
(either the string “solid” or the string “outline”),
and a color

RETURNS: an image of that rectangle.

[See the Help Desk for information on the
representation of colors in Racket].

7

Functions for Creating Images (3)

circle : Radius Mode Color -> Image

Like rectangle, but takes a radius instead of a
width and height.

There are lots of other functions for creating
shapes, like ellipse, triangle, star, etc.

8

Functions for Creating Images (4)

text

: String Fontsize Color -> Image

RETURNS: an image of the given text at the
given font size and color.

9

Combining Images

• The image library contains many functions for
combining images into larger images.

• These functions generally align the images on
their centers. This is usually what you want. If
you really want to align images on their edges,
there are functions in the library to do that, too.
See the help desk, as usual.

• Let’s look at the two most commonly-used image
combining-functions: beside and above. Here’s
an example:

10

beside and above

11

Slightly more complicated images

12

Slightly more complicated images

13

The rectangle has width 0, so it's invisible ☺

Scenes

• A scene is an image that has a coordinate
system.

• In a scene, the origin (0,0) is in the top left
corner. The x-coordinate increases as we
move to the right. The y-coordinate increases
as we move down. These are sometimes
called “computer-graphics coordinates”

• We use a scene when we need to combine
images by placing them at specific locations.

14

Scene Coordinates

15

(0,0) x

y

Creating Scenes

• (empty-scene width height)

– returns an empty scene with the given
dimensions.

• (place-image img x y s)

– returns a scene just like s, except that image img
is placed with its center at position (x,y) in s

– resulting image is cropped to the dimensions of s.

16

scene+line

• (scene+line s x1 y1 x2 y2 color)

– returns a scene just like the original s, but with a
line drawn from (x1,y1) to (x2,y2) in the
given color.

– the resulting scene is cropped to the dimensions
of s.

17

Creating Scenes by Combining Simpler
Functions

• Create scenes with images in them by
combining them with functions.

• Start with an empty-scene, then paint images
and lines on the scene by using place-image
and scene+line.

• This is all functional: painting an image on a
scene doesn’t change the scene– it produces a
new scene.

18

Video Demonstration

19YouTube link

https://www.youtube.com/watch?v=O7eDIBF3jKg

Measuring Images

• Racket also provides functions for determining
image properties. Here the most important
ones:

– image-width : Image -> NonNegInt

– image-height : Image -> NonNegInt

– image? : Any -> Boolean

20

In pixels

Bounding Box

• The bounding box of an image is the smallest
rectangle that completely encloses the image.

• Its width will be the image-width of the image,
and its height will be the image-height of the
image.

• It is easy to determine whether an arbitrary
point is inside the bounding box– let’s look at
an example.

21

Bounding Box Example

22

w = (image-width CAT-IMAGE)

h =
(image-height CAT-IMAGE)

(x0,y0)

(x,y) is inside the rectangle iff
(x0-w/2) ≤ x ≤ (x0 + w/2)

and (y0-h/2) ≤ y ≤ (y0+h/2)

y = y0-h/2

y = y0+h/2

x = x0-w/2 x = x0+w/2

Images and the Design Recipe:
Examples

• In your examples, describe the image in
words.

• Consider a function that takes an image and
doubles it.

• In your examples you might write:
(define red-circle1

(circle 20 "solid" "red"))

;; (double-image red-circle1)

;; = two red circles, side-by-side

23

Images and the Design Recipe: Tests
(1)

• First, construct the correct image. Do NOT use the function you are
testing to construct the image.

• In your tests, you might write

(define two-red-circles
(beside red-circle1 red-circle1))

– Be sure to check it visually to see that it's correct
• Alas, this step is not automatable.

• Then you can use check-equal? on the resulting images:

(check-equal?
(double-image red-circle1)
two-red-circles)

24

Images and the Design Recipe: Tests
(2)

• check-equal? is fairly clever, but not perfect.

• Which of the images below are visually equal?

• See which of them check-equal? accepts as
equal.

(define vspace1 (rectangle 0 50 "solid" "black"))

(define vspace2 (rectangle 0 50 "solid" "white"))

(define vspace3 (rectangle 0 50 "solid" "red"))

(define vspace4 (rectangle 0 50 "outline" "black"))

(define vspace5 (rectangle 0 50 "outline" "white"))

25

Summary

• Images are ordinary scalar values

• Create and combine them using functions

• Scenes are a kind of image

– create with empty-scene

– build with place-image

• 2htdp/image has lots of functions for doing all
this.

– Go look at the help docs

26

Next Steps

• If you have questions or comments about this
lesson, post them on the discussion board.

• Go on to the next lesson.

27

