
Testing

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 2.4

1
© Mitchell Wand, 2012-2016
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Outline

• What do we test?

• How do we test them?

• How do we choose and write test cases?

• How do we go about debugging using tests?

2

Learning Objectives

• At the end of this lesson, the student should
be able to:

– examine a test and see what it is testing for

– use the concept of equivalence classes to get
100% expression coverage

– use the rackunit framework to write test suites for
simple programming problems

– use the rackunit framework to help in debugging
simple programs

3

What do we want to test?

• Lots of things we could want to test, but for
now we’ll keep it simple:

• We want to make sure the answers from our
functions are correct.

• But what makes an answer correct?

• And how do you convince a reader that your
tests are testing the right thing?

4

Qualification Testing

• Does the program provide the functions that
are specified in the problem?

• Do they take the right number and type of
arguments? Do they return the right type of
result?

If they don’t, then the program is not ready for
further testing...

5

Acceptance Testing

• Does the program’s behavior satisfy the
requirements given in the problem?

• This is our primary focus

• The requirements probably give some
examples. Be sure to test them!

• Sometimes the requirements are more
complicated, so you'll have to make up
examples to check the requirements.

6

Mechanics of Testing

• In the Examples folder, you will find a file called extras.rkt
that you should put in the folder with your work.

• Copy it into the folder where your code is.
• Near the top of your file, write

(require rackunit)
(require "extras.rkt")

to load our testing framework.
• Tests live in the file with the code
• That way they get run every time the code is loaded

– This accomplishes regression testing.

• Wrap your tests in (begin-for-test)
– that way you can put the tests anywhere in your file, and they

will be run at the end of the file

7

Regression testing: Did I just break
something?

The simplest test cases

• Compute the right answer by hand, and make
up test cases to match

(begin-for-test

(check-equal? (f2c 32) 0

"32 Fahrenheit should be 0 Celsius")

(check-equal? (f2c 212) 100

"212 Fahrenheit should be 100 Celsius"))

8

This may not be enough

• Did I do the hand-computation right?

– If you’re lucky, the problem set said what the
answer should be.

– Otherwise, how does the reader know I didn’t just
take the result of my function and paste it into the
test?

• Maybe there’s more than one correct answer!

9

Property Testing

• Test a property of the answer

• Sometimes all you care about is that the
answer has some property

• There could be more than one acceptable
answer.

• Maybe the answer is something really
complicated, so check-equal? won’t do the
job, and the best we can do is check to see
whether the answer is “good enough.”

10

Example of Property Testing

;; zero-of-quadratic? : Real^4 -> Boolean
;; RETURNS: whether abs(ax^2 + bx + c) < .01
(define (zero-of-quadratic? a b c x)

(< (magnitude
(+ (* a x x)

(* b x)
c))

.01))

(define (quadratic-solution1 a b c) ...)
(define (quadratic-solution2 a b c) ...)

(begin-for-test
(check-true (zero-of-quadratic? 1 0 4 (quadratic-solution1 1 0 4)))
(check-true (zero-of-quadratic? 1 0 4 (quadratic-solution2 1 0 4)))
(check-true (zero-of-quadratic? 1 0 1 (quadratic-solution1 1 0 1)))
(check-true (zero-of-quadratic? 1 0 1 (quadratic-solution2 1 0 1)))
(check-true (zero-of-quadratic? 13 58 6 (quadratic-solution1 13 58 6))))

11

I didn’t have to find the
solution to these examples by
hand (especially the last one!)
I don’t care what the solutions
are. I only care that they solve
the given equations.

Test Coverage

• How much of the possible behaviors have we
tested?

• Want every line in the program exercised.
This is called 100% expression coverage.

• This is our minimum testing requirement(*).

• But this doesn’t necessarily test all the desired
behaviors of our program.

• To get a better handle on this, we introduce
the idea of equivalence partitioning.

12

(*) except for functions that call
big-bang

Equivalence Partitioning

• Possible arguments to your function typically fall
into classes for which the program yields similar
results.

• Example: f2c had only 1 partition.
• Example: ball-after-mouse depends on

– Which mouse event we’re dealing with
– Whether the mouse event is inside or outside the ball
– Whether the ball is selected

• So we need 3 x 2 x 2 = 12 tests to cover all these
combinations.

13

Equivalence Partitioning

14

Regions of similar behavior

A B

If the program works for input A, it will probably work for input B

Choosing test cases

• The first step in choosing test cases is to divide
your program into equivalence partitions.

• Pick some input and output values for each
partition. Give mnemonic names to each of
them. You can put these definitions with your
data definitions, so you can use the names in
your examples.

• Then write your tests using the mnemonic
names.

15

Testing ball-after-mouse

• For ball-after-mouse, we decided there were
12 partitions: 3 mouse events, 2 points (inside
or outside the ball), and 2 balls (selected or
unselected).

• So we create two balls at position (20,30),
with radius 10, one unselected and one
selected, and define two points, one inside
the ball and one outside.

16

Example (1)

;; two balls at (20,30), one unselected and one selected

(define ball-unselected (make-ball 20 30 10 false))

(define ball-selected (make-ball 20 30 10 true))

;; (22,28) is inside the ball at (20,30)

(define point-inside-x 22)

(define point-inside-y 28)

;; (31,19) is outside the ball at (20,30)

(define point-outside-x 31) ;; 20+10 = 30, so 31 is outside

(define point-outside-y 19) ;; 30-10 = 20, so 19 is outside

17

The names of these values must be
descriptive. Calling them ball-1
and ball-2 is not acceptable.

Example (2)

;; next we make two balls, one moved to the inside point

;; and one moved to the outside point.

;; When a ball is moved, it will stay selected, so we make

;; selected? true for both of these.

(define ball-moved-to-point-inside

(make-ball point-inside-x point-inside-y 10 true))

(define ball-moved-to-point-outside

(make-ball point-outside-x point-outside-y 10 true))

18

Example
(check-equal?

(ball-after-mouse ball-unselected point-inside-x point-inside-y "button-down")
ball-selected
"button-down inside the ball should select it")

(check-equal?
(ball-after-mouse ball-unselected point-outside-x point-outside-y "button-down")
ball-unselected
"button-down outside the ball should leave it unchanged")

19

• check-equal? takes 3 arguments: the expression to be tested, the value we
believe is the correct answer, and an optional string that is printed if the
test fails.

• Supply an informative error message if you can. An uninformative error
message, like “wrong answer” is worse than no message at all.

Video: ball-after-mouse-with-tests

20

Note: this video uses an older version of our testing
technology. We use begin-for-test instead of define-
test-suite and run-test. The details are a little different,
but the principles are the same.

YouTube link

https://www.youtube.com/watch?v=Sm_RchgWAu0

Using Tests

• Run your program with its tests

• Debug so that all your tests pass

• If you didn't achieve 100% expression
coverage, go back and add more tests.
– Just because your tests pass with 100% coverage

doesn’t mean your program is right!

– But 100% expression coverage is our standard for
this course.

– Your workplace may have different standards.

21

except for functions
that call big-bang

Testing Pitfalls

• DON’T just paste in the actual results of your
function.

• Some functions may have more than one
correct answer.

– your tests should accept any correct answer, not
just the one your solution happens to produce

– use property testing to handle this situation.

22

Testing Pitfalls (2)

• Avoid coincidences in your tests, just as you
did in your examples

• Bad:
(check-equal?

(book-profit-margin

(make-book "Little Lisper" "Friedman" 2.00 4.00))

2.00)

• Better:
(check-equal?

(book-profit-margin

(make-book "Little Lisper" "Friedman" 2.00 5.00))

3.00)

23

Tests Written?

• Once you’ve written the deliverables for the
first five steps of the design recipe, it’s time to
run the program. (Program Review will come
later)

• What could possibly go wrong?

• Let’s make a short list...

24

What could go wrong?

• Program fails to load
– unbalanced parens? The unmatched paren is

highlighted in the interaction window.

– missing function?
• forgot to write definition

• misspelled function name

• forgot to require the library module

• misspelled library name
– the error message Racket gives you in this case is especially

scary. But don't be frightened. It just means that it couldn't
find the library you told it to look for.

25

What could go wrong? (2)

• You could get an error calling a Racket
primitive.

– eg: "can't apply string=? to 1"

– this may be something simple, like the wrong test,

– or it may be more subtle-- "how did I manage to
pass a 1 to string=?"

– Write more tests to see how you got to this.

26

What could go wrong (3)

• A test fails
1. Identify the test that failed

• Racket will highlight the test that failed. Having an informative error
message will also help you identify the test

2. Check the test: is the answer that it asked for really the right
one?
• If not, fix the test
• DON’T just paste in the actual results of your function.

3. If the test is right, play detective by adding new tests.
• Add a test to see if your function called the right helper. Did it?

– yes: the helper is the one giving the wrong answer. Test the helper and fix it.
– no: your original function didn’t call the helper as it should.

» The call to the helper is probably guarded by a predicate. Test the
predicate to see if it is returning the right value.

» Did it pass the right arguments? Write some more tests to see.

27

Debugging by Testing: Example

Code:
(define (ball-after-mouse b mx my mev)
(cond

[(mouse=? mev "button-down")
(ball-after-button-down b mx my)]
[(mouse=? mev "drag") (ball-after-drag b mx my)]
[(mouse=? mev "button-up") (ball-after-button-up b mx my)]
[else b]))

Failing Test:
(check-equal?

(ball-after-mouse
ball-unselected point-inside-x point-inside-y "button-down")

ball-selected
"button-down on an unselected ball should make the ball
selected")

28

Imagine we have this function
definition and this failing test.

This test checks the combination of
ball-after-mouse and ball-after-
button-down. If it fails, either
procedure might be at fault.

Debugging by Testing (2)

(check-equal?

(ball-after-mouse

ball-unselected

point-inside-x point-inside-y

"button-down")

(ball-after-button-down

ball-unselected

point-inside-x point-inside-y))

Test fails: problem is in ball-after-
mouse

Test succeeds: problem is in ball-after-
button-down

29

On a button-down, we were
supposed to call ball-after-button-
down. So let’s create a test to see if
that happened.

We know that ball-after-button-down was
supposed to be called, so these two
expressions should return the same thing,
even if it's the wrong thing. So if this test
fails, we know that ball-after-mouse didn't
call ball-after-button-down correctly. If
the test succeeds, we know that ball-
after-button-down was called, but it is
returning the wrong thing, because the

test on the previous slide is still failing.

Tracking down your bug

(define (ball-after-button-down b mx my)

(if (inside-ball? mx my b)

(ball-make-selected b)

b))

(check-equal?

(ball-after-button-down

ball-unselected

point-inside-x point-inside-y)

(ball-make-selected ball-unselected))

Test succeeds: problem is in ball-make-selected

Test fails: problem is in inside-ball?

30

Let’s imagine we’ve identified ball-after-
button-down as the likely culprit. We could
write another test to see whether ball-after-
button-down is calling ball-make-selected
correctly.

Keep your bug from re-appearing

• Leave the extra tests in your file

• That way if your bug reappears you will have
the detective work all set up.

31

Disclaimer

• Our presentation has been specific to Racket
and to this course, but the ideas and
techniques are adaptable to other settings
and other languages.

• Your employer may have different conventions
for managing tests.

• If your employer does not have a convention
or process for systematic testing, you should
urge him (or her) to introduce one.

32

Summary

• You should now be able to:

– examine a test and see what it is testing for

– use the concept of equivalence classes to get
100% expression coverage

– use the rackunit framework to write test suites for
simple programming problems

– use the rackunit framework to help in debugging
simple programs

33

Next Steps

• Study 02-4-1-test-quadratics.rkt and 02-4-2-
ball-after-mouse-with-tests.rkt .

• Remove some of the tests from 02-4-2-ball-
after-mouse-with-tests.rkt and compare the
code coloring with and without 100% test
coverage.

• If you have questions or comments about this
lesson, post them on the discussion board.

• Go on to the next lesson.

34

