
Examining Two Pieces of Data

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 2.3

1
© Mitchell Wand, 2012-2014
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Don’t take apart more than one value
at a time

• Almost always this will leave you with a
program that is a mess.

• Better: If you need to examine more than one
value, examine one argument first, using its
observer template, and pass the results on to
a suitable help function or functions.

2

Let’s continue the traffic light problem
from the last lesson

;; A Traffic Light changes its color every 20
seconds, controlled by a
;; countdown timer.

;; A TrafficLight is represented as a struct
;; (make-light color time-left)
;; with the fields
;; color : Color represents the current
;; color of the traffic light
;; time-left : TimerState represents the
;; current state of the timer

;; For the purposes of this example, we leave
;; Color and TimerState undefined. For a
;; working example, we would have to define
;; these.

;; IMPLEMENTATION
(define-struct light (color time-left))

;; CONSTRUCTOR TEMPLATE
;; (make-light Color TimerState)

;; OBSERVER TEMPLATE (omitted)

;; light-after-tick :
;; TrafficLight -> TrafficLight
;; GIVEN: the state of a traffic light
;; RETURNS: the state of a traffic
;; light after 1 second
;; EXAMPLES: (omitted)

;; DESIGN STRATEGY: Use constructor
;; template for TrafficLight

(define (light-after-tick l)
(make-light
(color-after-tick l)
(timer-after-tick l)))

3

First, let’s fill in some of the details

;; CONSTANTS

;; the interval between color changes
(define COLOR-CHANGE-INTERVAL 20)

;; DATA DEFINITIONS:

;; Color

;; a Color is represented by one of the strings
;; -- "red"
;; -- "yellow"
;; -- "green"
;; INTERP: self-evident
;; EXAMPLES:
(define red-color "red")
(define yellow-color "yellow")
(define green-color "green")

;; countdown timer

;; A TimerState is represented a PositiveInteger
;; WHERE: 0 < t <= COLOR-CHANGE-INTERVAL
;; INTERP: number of seconds until the next color change.
;; If t = 1, then the color should change at the next
;; second.

;; timer-at-next-second : TimerState -> TimerState
;; GIVEN: A TimerState
;; RETURNS: the TimerState at the next second
;; EXAMPLES:
;; (timer-at-next-second 17) = 16
;; (timer-at-next-second 1) = COLOR-CHANGE-INTERVAL
;; STRATEGY: if t = 1 then recycle, otherwise decrement
(define (timer-at-next-second t)

(if (= t 1)
COLOR-CHANGE-INTERVAL
(- t 1)))

(check-equal? (timer-at-next-second 17) 16)
(check-equal? (timer-at-next-second 1)

COLOR-CHANGE-INTERVAL)

4

timer-at-next-second is easy. Note
how I’ve written a design strategy
that is more informative than
“cases on t”. But “cases on t”
would have been an acceptable
thing to write for the strategy.

;; color-at-next-second : TLColor TimerState -> TLColor
;; GIVEN: a TLColor c and a TimerState t
;; RETURNS: the color of the traffic light at the next
second.
;; EXAMPLES:
;; (color-at-next-second red-color 7) = red-color
;; (color-at-next-second red-color 1) = green-color
;; (color-at-next-second green-color 1) = yellow-color
;; (color-at-next-second yellow-color 1) = red-color

What about color-at-next-second?

5

color-at-next-second needs
to inspect both the current
color and the current timer
state!

Which shall we inspect first?
Let's try each one and see
how each of them
works out.

Version #1: Look at the color first

;; STRATEGY: Cases on c : Color

(define (color-at-next-second c t)
(cond
[(string=? c "red")
(if (= t 1) "green" "red")]

[(string=? c "yellow")
(if (= t 1) "red" "yellow")]

[(string=? c "green")
(if (= t 1) "yellow" "green")]))

6

That’s pretty ugly! Look at
all the repeated (if (= t 1)
...)’s.

It also violates "one function,
one task", since it has to
decide WHEN to change color
AND also what color to change
to.

Version #2: Look at the timer first

;; STRATEGY: Cases on t
(define (color-at-next-second c t)

(if (= t 1) (next-color c) c))

;; next-color : TLColor -> TLColor
;; GIVEN: a TLColor
;; RETURNS: the TLColor that follows
the given TLColor
;; (next-color "red") = "green"
;; (next-color "yellow") = "red"
;; (next-color "green") = "yellow"
;; STRATEGY: cases on c : TLColor

(define (next-color c)
(cond

[(string=? c "red")
"green"]
[(string=? c "yellow")
"red"]
[(string=? c "green")
"yellow"]))

7

Ahh!! That’s much better: No repeated code. Each function
has its own task: next-color knows about colors, and color-
at-next-second knows about the timer.

• Let's consider ball-after-mouse:

• We are modelling the behavior of a ball in a
simulation.

• The ball responds to mouse events. To model
this response, we will clearly have to look both
at the ball and the mouse event.

• Let's look at the data definition and the
functions.

Example #2: ball-after-mouse

8

;; ball-after-mouse :
;; Ball Integer Integer MouseEvent -> Ball
;; GIVEN: a ball, a location and a mouse event
;; RETURNS: the ball after the given mouse event at
;; the given location.

• Remember, when we say "a ball", we mean “the
state of the ball”: this function takes a ball state
and returns another ball state.

• This is sometimes called “the successor-value
pattern.”

ball-after-mouse (2)

9

Data Definition: Ball

;; REPRESENTATION:
;; A Ball is represented as a struct
;; (ball x y radius selected?)
;; with the following fields:
;; x, y : Integer the coordinates of the center of the ball, in pixels,
;; relative to the origin of the scene.
;; radius : NonNegReal the radius of the ball, in pixels
;; selected? : Boolean true iff the ball has been selected for dragging.

;; IMPLEMENTATION:
(define-struct ball (x y radius selected?))

;; CONSTRUCTOR TEMPLATE
;; (make-ball Integer Integer NonNegReal Boolean)

;; OBSERVER TEMPLATE
;; ball-fn : Ball -> ??
(define (ball-fn b)

(... (ball-x b)
(ball-y b)
(ball-radius b)
(ball-selected? b)))

Mouse events

• MouseEvent is defined in the 2htdp/universe
module. Every MouseEvent is represented as a
string, but not every string is the representation
of a mouse event.

• Two mouse events can be compared with
mouse=?

• Mouse events are reported with a location,
consisting of two integers representing the x
and y position of the event on the canvas.

11

ball-after-mouse

;; ball-after-mouse :
;; Ball Integer Integer MouseEvent -> Ball
;; GIVEN: a ball, a location and a mouse event
;; RETURNS: the ball after the given mouse event at
;; the given location.
;; STRATEGY: Cases on mev
(define (ball-after-mouse b mx my mev)

(cond
[(mouse=? mev "button-down")
(ball-after-button-down b mx my)]

[(mouse=? mev "drag")
(ball-after-drag b mx my)]

[(mouse=? mev "button-up")
(ball-after-button-up b mx my)]

[else b])) We now have a wishlist of
functions to design:
ball-after-button-down
ball-after-drag
ball-after-button-up

We first do cases on the mouse
event. The data is handed off to
one of several help functions.
Each help function will decompose
the compound data.

MouseEvent

button-
down

drag button-up

Remember: The Shape of the Program
Follows the Shape of the Data

13

ball-after-
button-down

ball-after-
mouse-event

ball-after-
drag

Data Hierarchy
Call Tree (the arrow
goes from caller to
callee)

ball-after-
button-up

ball-after-drag

;; ball-after-drag
;; : Ball Integer Integer -> Ball
;; GIVEN: a ball and a location
;; RETURNS: the state of the ball after a drag
;; event at the given location.
;; STRATEGY: Use template for Ball on b.
(define (ball-after-drag b x y)
(if (ball-selected? b)

(ball-moved-to b x y)
b))

This moves the ball so its center is at the mouse point. That’s
probably not what you want in a real application. You probably
want something that we call “smooth drag”, which we’ll learn
about in a problem set coming up soon.

or “cases on whether
ball is selected”. Either
is an OK description of
the strategy.

ball-moved-to

;; ball-moved-to : Ball Integer Integer -> Ball
;; GIVEN: a ball and a set of coordinates
;; RETURNS: a ball like the given one, except
;; that it has been moved to the given
;; coordinates.
;; STRATEGY: use template for Ball on b

(define (ball-moved-to b x y)
(make-ball x y

(ball-radius b)
(ball-selected? b)))

You could describe the strategy here
as “use the observer template,”
since we are using the fields of the
ball, or as “use the constructor
template”, since we are using make-
ball. Either would be OK, or you
could simply write “use template”,
as we’ve done here.

A bigger portion of the call tree

16

ball-after-mouse

ball-after-drag
ball-after-button-

up
ball-after-button-

down

ball-moved-to

Will need to fill in more
functions here

An inferior version of ball-after-drag

;; ball-after-drag
;; : Ball Integer Integer -> Ball
;; GIVEN: a ball and a location
;; RETURNS: the ball after a drag event at the
;; given location.
;; STRATEGY: Use template for Ball on b

(define (ball-after-drag b x y)
(if (ball-selected? b)

(make-ball x y
(ball-radius b)
(ball-selected? b)))

b))

This version is not as good as
the preceding one, because it
does two tasks: it decides
WHEN to move the ball, and it
also figures out HOW to move
the ball.

Exception

• Sometimes it’s really clearer to take apart two
things at once.

• Almost always this is because you are taking
apart two compounds.

18

Example: balls-collide.rkt

;; balls-intersect? : Ball Ball -> Boolean
;; GIVEN: two balls
;; ANSWERS: do the balls intersect?
;; STRATEGY: Use template for Ball on b1 and b2.

(define (balls-intersect? b1 b2)
(circles-intersect?

(ball-x b1) (ball-y b1) (ball-radius b1)
(ball-x b2) (ball-y b2) (ball-radius b2)))

19

This is OK, because trying to take
the balls apart in separate functions
just leads to awkward code.

;; circles-intersect? : Real^3 Real^3 -> Boolean
;; GIVEN: two positions and radii
;; ANSWERS: Would two circles with the given
;; positions and radii intersect?
;; STRATEGY: Transcribe formula
(define (circles-intersect? x1 y1 r1 x2 y2 r2)

(<=
(+

(sqr (- x1 x2))
(sqr (- y1 y2)))

(sqr (+ r1 r2))))

circles-intersect?

20

circles-intersect? knows about
geometry. It doesn't know
about balls: eg it doesn't know
the field names of Ball or about
ball-selected? .

If we changed the representation of balls, to
add color, text, or to change the names of the
fields, circles-intersect? wouldn't need to
change.

If you didn't break up balls-
intersect? with a help
function like this, you would
very likely be penalized for
"needs help function"

Writing good definitions

• If your code is ugly, try decomposing things in
the other order

• Remember: Keep it short!
• If you have complicated junk in your function, you must

have put it there for a reason. Turn it into a separate
function so you can explain it and test it.

• If your function is long and unruly, it probably means you
are trying to do too much in one function. Break up your
function into separate pieces and use “Combine Simpler
Functions.”

21

Next Steps

• Study the files
– 02-3-1-traffic-light-with-timer.rkt
– 02-3-2-ball-after-mouse.rkt
– 02-5-balls-collide.rkt

in the Examples folder.
• Run them. Observe how untested code appears

in orange or black.
• If you have questions or comments about this

lesson, post them on the discussion board.
• Go on to the next lesson.

22

