
Design Strategies

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson 2.2

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Learning Objectives

• At the end of this lesson, the student should
be able to recognize and use the design
strategies:

– transcribe formula

– combine simpler functions

– use template

– divide into cases

2

Review: Programs are sets of
Functions

• We organize our programs as sets of functions.

• A function takes an argument (or arguments) and
returns a result.

• The contract says what kind of data the argument
and result are.

• Purpose statement describes how the result
depends on the argument.

• The design strategy is a short description of how
you got from the purpose statement to the code.

3

Examples of Design Strategies

1. Transcribe formula

2. Combine simpler functions

3. Use the template for <data def> on <variable>

4. Divide into cases on <condition>

• A particular piece of code could be described by
several different strategies.

• What’s important is to write down a strategy that
helps the reader understand the code

4

Design Strategy: Transcribe formula

• Many times the desired function is just the
evaluation of a mathematical formula

• This is what we did for f2c

• Another example: 02-2-1-velocity.rkt

5

Design Strategy: combine simpler
functions

• Sometimes the problem can be solved by
composing two or more subproblems.

• Here’s an example: area-of-ring, which calls
area-of-circle.

• We say the strategy for area-of-ring is
“combine simpler functions”, and the strategy
for area-of-circle is “transcribe formula”

• Read 02-2-2-area-of-ring.rkt and the
commentary there.

6

What can you write in a combination
of simpler functions?

• Remember that the goal is to write beautiful programs.

• You want your reader to understand what you’re doing
immediately.

• So just keep it simple.

• We won’t have formal rules about this, but:

• If the TA needs you to explain it, it’s not simple enough.

• Anything with an if is probably not simple enough.
– If you need an if, that’s a sign that you’re using a fancier

design strategy. We’ll talk about these very soon.

7

Keep it short!

• “Combining simpler functions” is for very
short definitions only.

• If you’re writing something complicated, that
means one of two things:

– You’re really using some more powerful design
strategy (to be discussed)

– Your function needs to be split into simpler parts.

8

If you have complicated stuff in your
function you must have put it there for a
reason. Turn it into a separate function so
you can explain and test it.

When do you need to introduce new
functions?

• If a function has pieces that can be given
meaningful contracts and purpose statements,
then break it up and use function
composition.

• Then apply the design recipe to design the
pieces.

9

;; ball-after-tick : Ball -> Ball
;; strategy: combine simpler functions
(define (ball-after-tick b)
(if
(ball-would-hit-wall? b)
(ball-after-bounce b)
(ball-after-straight-travel b)))

Bad Example

;; ball-after-tick : Ball -> Ball
;; strategy: use template for Ball
(define (ball-after-tick b)
(if
(and

(<= YUP (where b) YLO)
(or (<= (ball-x b) XWALL

(+ (ball-x b)
(ball-dx b)))

(>= (ball-x b) XWALL
(+ (ball-x b)
(ball-dx b)))))

(make-ball
(- (* 2 XWALL)
(ball-x (straight b 1.)))

(ball-y (straight b 1.))
(- (ball-dx (straight b 1.)))
(ball-dy (straight b 1.)))

(straight b 1.)))

Here’s a pair of examples. Which do you think
is clearer? Which looks easier to debug?
Which would you like to have to defend in
front of a TA?

10

Do you think “combine simpler functions” is a
good description of how this function works?

Design Strategy: Use template

• We’ve already seen examples of using an
observer template in Lesson 1.4, so we won’t
repeat that here.

• If we are returning a struct, sometimes it’s
more informative to say that we are using a
constructor template.

11

Example of using a constructor
template

;; A Traffic Light changes its color every 20
seconds, controlled by a
;; countdown timer.

;; A TrafficLight is represented as a struct
;; (make-light color time-left)
;; with the fields
;; color : Color represents the current
;; color of the traffic light
;; time-left : TimerState represents the
;; current state of the timer

;; For the purposes of this example, we leave
;; Color and TimerState undefined. For a
;; working example, we would have to define
;; these.

;; IMPLEMENTATION
(define-struct list (color time-left))

;; CONSTRUCTOR TEMPLATE
;; (make-light Color TimerState)

;; OBSERVER TEMPLATE (omitted)

;; light-after-tick :
;; TrafficLight -> TrafficLight
;; GIVEN: the state of a traffic light
;; RETURNS: the state of a traffic
;; light after 1 second
;; EXAMPLES: (omitted)

;; DESIGN STRATEGY: Use constructor
;; template for TrafficLight

(define (light-after-tick l)
(make-light
(color-after-tick l)
(timer-after-tick l)))

12

Here we’ve divided the problem into 2 parts: finding
the color after a tick and finding the timer state after
a tick.
It would be OK to describe this as “combine simpler
functions”, but it’s more informative to describe it as
using the constructor template. This is also a very
common pattern in our code.

TrafficLight

Color TimerState

Remember: The Shape of the Program
Follows the Shape of the Data

13

color-after-
tick

light-
after-tick

timer-after-
tick

Data Hierarchy
Call Tree (the arrow
goes from caller to
callee)

Design Strategy: Divide into cases

• Sometimes you need to break up an argument
in some way other than by its template.

• We already saw this in Lesson 0.4 in the
definition of abs:

; abs : Real -> Real
; RETURNS: the absolute value of the given real number.
; STRATEGY: divide into cases on sign of x
(define (abs x)

(if (< x 0)
(- 0 x)
x))

14

Example: income tax

• Imagine we are computing income tax in a
system where there are three rates:

– One on incomes less than $10,000

– One on incomes between $10,000 and $20,000

– One on incomes of $20,000 and over

• The natural thing to do is to partition the
income into three cases, corresponding to
these three income ranges.

15

Write a cond or if that divides the data
into the desired cases

16

;; STRATEGY: Cases on amt
;; f : NonNegReal -> ??
(define (f amt)
(cond

[(and (<= 0 amt) (< amt 10000)) ...]
[(and (<= 10000 amt) (< amt 20000)) ...]
[(<= 20000 amt) ...]))

Write a cond or if that divides the data
into the desired cases

;; tax-on : NonNegInt -> NonNegInt
;; GIVEN: A person’s income in USD
;; RETURNS: the tax on the income in USD
;; EXAMPLES:
;; STRATEGY: Cases on amt
(define (tax-on amt)

(cond
[(and (<= 0 amt) (< amt 10000)) ...]
[(and (<= 10000 amt) (< amt 20000)) ...]
[(<= 20000 amt) ...]))

The predicates must be exhaustive. Make
them mutually exclusive when you can.

Now fill in the blanks

;; tax-on : NonNegReal -> NonNegReal
;; GIVEN: A person’s income
;; RETURNS: the tax on the income
;; EXAMPLES:
;; STRATEGY: Cases on amt

(define (tax-on amt)
(cond
[(and (<= 0 amt) (< amt 10000))

0]
[(and (<= 10000 amt) (< amt 20000))
(* 0.10 (- amt 10000))]

[(<= 20000 amt)
(+ 1000 (* 0.20 (- amt 20000)))]))

Another example

;; ball-after-tick : Ball -> Ball
;; GIVEN: The state of a ball b
;; RETURNS: the state of the given ball at the next tick
;; STRATEGY: cases on whether ball would hit the wall on
;; the next tick

(define (ball-after-tick b)
(if (ball-would-hit-wall? b)
(ball-after-bounce b)
(ball-after-straight-travel b)))

19

Where does cases fit in our menu of
design strategies?

• If you are inspecting a piece of enumeration
or mixed data, you almost always want to use
the template for that data type.

• Cases is mostly for when dividing up the data
by the template doesn't work.

20

Before we go...

• What should the contracts and purpose
statements be for ball-after-bounce and ball-
after-straight-travel ?

• It can’t be
;; GIVEN: The state of a ball b
;; RETURNS: the state of the given ball at the next tick

• because then these would have to work for any
ball.

• When these functions are called, we have
additional information, and we need to
document that information in these functions’
contracts and purpose statements.

21

These are better...

;; ball-after-bounce : Ball -> Ball
;; GIVEN: The state of a ball b that is going to bounce
;; on the next tick
;; RETURNS: the state of the given ball at the next tick

;; ball-after-straight-travel : Ball -> Ball
;; GIVEN: The state of a ball b that will not bounce
;; on the next tick
;; RETURNS: the state of the given ball at the next tick

22

Summary

• We’ve now seen four Design Strategies:
– Transcribe formula
– Combine Simpler Functions

• Combine simpler functions in series or pipeline
• Use with any kind of data

– Use Template
• Used for enumeration , compound, or mixed data
• Template gives sketch of function
• Our most important tool

– Cases
• For when you need to divide data into cases, but the

template doesn’t fit.

Remember:
The shape of the

program follows the
shape of the data.

23

Next Steps

• Study the example files

– 02-2-1-velocity.rkt

– 02-2-2-area-of-ring.rkt

– 02-2-3-traffic-light-with-timer1.rkt

• If you have questions or comments about this
lesson, post them on the discussion board.

• Go on to the next lesson

24

