
Contracts, Purpose Statements, 
Examples and Tests

CS 5010 Program Design Paradigms 
“Bootcamp”

Lesson 2.1

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/


Module 02

2

Basic Principles

Designing 
Data

Designing 
Functions

Designing 
Systems

Tools and 
Techniques

Computing 
with Lists

Computing 
with Trees 

and Graphs

Designing 
with 

Invariants

Thinking 
about 

Efficiency

Object-Oriented 
Programming

Interfaces 
and Classes

Inheritance

Objects with 
Mutable 

State

Efficiency, 
Part 2



Module Objectives

• Last week, we introduced the Function Design 
Recipe, and examined the first step, Data 
Design, in detail.

• This week we will talk in more detail about the 
rest of the steps in the Function Design 
Recipe.

• We will also talk about the kinds of bugs you 
might encounter while running your programs 
and how to fix them.

3



Lesson Objectives

At the end of this lesson, students will be able 
to:

• Write a contract and purpose statements for 
simple functions.

• Provide examples showing sample arguments 
and  intended results.

• Write down the examples as human readable 
comments within the program.



Lesson Outline

In this lesson we'll talk about two more steps in 
the Design Recipe:

• Step 2: Contract and Purpose Statement

• Step 3: Examples and Tests

We'll also talk about a few other things, like how 
to choose good names for your functions and 
variables.



The Function Design Recipe

The Function Design Recipe

1. Data Design

2. Contract and Purpose Statement

3. Examples and Tests

4. Design Strategy

5. Function Definition

6. Program Review



FDR Step 2: Contract and Purpose 
Statement

• Contract: specifies the kind of input data and the 
kind of output data

• Purpose Statement: A set of short noun phrases 
describing what the function is supposed to 
return. These are typically phrased in terms of 
information, not data. 
– They generally take the form GIVEN/RETURNS, where 

each of these keywords is followed by a short noun 
phrase.

– When possible, they are phrased in terms of 
information, not data.

7



Examples of Contract and Purpose 
Statements

;; f2c: FarenTemp -> CelsiusTemp
;; GIVEN: a temperature in Fahrenheit, 
;; RETURNS: the equivalent temperature in 
;;   Celsius

;; f2mars : FarenTemp -> CelsiusTemp
;; GIVEN: Any temperature in Fahrenheit
;; RETURNS: The mean temperature on the surface
;;   of Mars, in Celsius

8



Examples of Contract and Purpose 
Statements (2)

scene-with-cat : Cat Scene -> Scene

GIVEN: a Cat c and a Scene s 

RETURNS: A Scene like s, except that the Cat c 
has been painted on it. 

9



What makes a good purpose 
statement?

• It gives more information than just the contract.  
For example

GIVEN: an Integer and a Boolean
RETURNS: an Integer

is not a good purpose statement

• It is specific. Ideally, a reader should be able to 
figure out what a function returns just by 
reading the purpose statement
– perhaps along with examples, other documentation, 

etc.
– but WITHOUT reading the code!



• A good choice of function name is important. 
• When a function is used in some other piece of 

code, the reader should be able to tell roughly 
what a function computes just by looking at its 
name. 

• If further detail is needed, then the reader can 
refer to the purpose statement of the function.

• If the function name is chosen well and the 
purpose statement is written well, the reader 
should rarely, if ever, need to refer to the function 
definition.

Good Function Names are Important

11

For more discussion, see What's in a Name?

https://blogs.janestreet.com/whats-in-a-name/


Conventions for Good Function Names

• Function names should almost always be nouns 

• Should describe the result of the function 

– e.g. area, not compute-area

• Predicates should end in ? : e.g., square?
(pronounced "huh?", as in "square-huh?")

• Use first component of the name to distinguish 
similar functions with different arguments, e.g.:

– circle-area, ring-area 

– book-price, total-order-price



Conventions for Good Names

• In Racket, "-" and "?" are legal characters that 
may occur in names.

• Use the minus sign to separate components of 
a name, e.g. total-order-price

• Use the question mark to name predicates: 
eg, square? .

• These are our conventions.  Other languages 
have other conventions; you should follow 
them.



Argument Names

• We use short names for arguments:
– b for a Book

• Or mnemonic names:
– cost, price

• Qualified names:
– mouse-x, bomb-x

• Avoid lame names, like list1 .  Names should refer to 
the information, not just the data type, whenever 
possible.

• These are our conventions. Your workplace may have 
different conventions for argument names.



Numeric Data Types

• In Racket, Number includes Complex numbers, 
so we'll hardly ever use Number.

• Integer vs. NonNegReal vs. PosReal ?
– look to the data definition.  If your number 

represents a quantity that is always non-negative 
(say, a length or an area), then call it a NonNegInt.

– if we're not dealing with physical quantities, then 
we'll typically use Integer.

– Your function has to handle any value of the type it 
says in the contract.

15



FDR Step 3: Examples and Tests

• Examples show sample arguments and results, 
to make clear what is intended.

• This may include showing how the function 
should be called.

• It should also illustrate the different behaviors 
of the function.

• How many examples, and what kind, will 
depend a lot on the function



Examples of Examples (1)

• If the function is a linear function of a single 
input, two examples are sufficient to uniquely 
determine the function.

• We saw this for f2c :

;; (f2c 32) = 0

;; (f2c 212) = 100

17



Examples of Examples (2)

• If the function takes an argument that is itemization or 
mixed data, then choose examples from each subclass 
of the itemization.

• Example:
;; (next-state "red") = "green"
;; (next-state "yellow") = "red"
;; (next-state "green") = "yellow"

• If your function uses a cond to divide its inputs  into 
classes, choose examples from each class.



Examples of Examples (3)

• Avoid coincidences in your examples.
• This example is coincidental:

(book-profit-margin 
(make-book "Little Lisper" "Friedman" 2.00 4.00)) 

= 2.00

– Is the answer 2 because we subtracted 2 from 4, or 
because it is the third field in the book? 

• This example is not coincidental:
(book-profit-margin 
(make-book "Little Lisper" "Friedman" 2.00 5.00)) 
= 3.00

– we must have subtracted 2 from 5 to get 3.



Make your examples readable

;;; Here’s an example: a rocket simulation.  
;; INFORMATION ANALYSIS:

;; An Altitude is represented as a Real, measured in meters

;; A Velocity is represented as Real, measured in meters/sec upward

;; We have a single rocket, which is at some altitude and is
;; travelling vertically at some velocity.

;; REPRESENTATION:
;; A Rocket is represented as a struct (make-rocket altitude velocity)
;; with the following fields:
;; altitude : Altitude  is the rocket's altitude
;; velocity : Velocity  is the rocket's velocity

;; IMPLEMENTATION:
(define-struct rocket (altitude velocity))

;; CONSTRUCTOR TEMPLATE:
;; (make-rocket Real Real)

20



Not-so-readable examples

;; EXAMPLE:
;; (rocket-after-dt (make-rocket 100 30) 0) 
;;  = (make-rocket 100 30)
;; (rocket-after-dt (make-rocket 100 30) 2) 
;;  = (make-rocket 160 30)

• What do these examples illustrate?  Where did those 
values come from?

• These are very simple structures, but for more 
complicated structures you’d have a hard time telling.
– and so would your grader, or boss!

• And if you change the representation of rockets, you’ll 
have to change all your examples, too!

21



Better Examples

(define rocket-at-100 (make-rocket 100 30))
(define rocket-at-160 (make-rocket 160 30))

;; (rocket-after-dt rocket-at-100 0) = rocket-at-100
;; (rocket-after-dt rocket-at-100 2) = rocket-at-160

• Here we’ve introduced mnemonic names for each of the 
example values. These could serve as examples for the data 
definitions, too.

• You can inspect those definitions to check whether they 
represent the rocket they are supposed to represent.

• The example is in terms of information, not data.
• If you decide later to change the representation, you can still 

use the examples.

22



Turn your examples into tests

(begin-for-test

(check-equal? (f2c 32) 0)

(check-equal? (f2c 212) 100))

• Tests live in your file, so they are checked every 
time your file is loaded

• Exact technology for tests may change; see the 
example files for current technology

• LOTS more to say about testing, but this is 
enough for now.

23



Summary

• In this lesson, you have learned how to:

– Write a contract and purpose statements for 
simple functions.

– Provide examples showing sample arguments and  
intended results.

– Write down those examples as human readable 
comments within the program.

– Turn your examples into executable tests.

24



Next Steps

• Study the file 02-1-1-rocket-examples.rkt in 
the Examples folder.

• If you have questions about this lesson, post 
them on the discussion board.

• Go on to the next lesson.

25




